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1. Introduction

In recent years several authors considered the problem of finding when
will the one-point compactification M\ J oo of a locally compact ANR space M
also be an ANR. The present paper treats three topics related to this problem.

We fiist define in § 3 classes of weakly ¢,-movable, C,-movable, and
strongly ¢,-movable at infinity non-compact locally compact spaces, for an
arbitrary class €, of pairs of topological spaces. The rest of §3 contains
examples illustrating those concepts. The following § 4 presents elementary
theorems concerning those classes that resemble some results from [6]. In § 5
we restrict our attention to ANR spaces. Under that assumption we prove that
C,-movability at o and strong C,movability at o are equivalent and that
for every ¢,-movable at «o ANR space M the Freudenthal end-point compac-
tification FM (and, therefore also, the one-point compactification M) o) is
an ANR space.

The second topic, ANR divisors, is considered in § 6. The notion of
an ANR divisor was introduced by Hyman in [15]. A compactum X is an ANR
divisor provided the space Y/X obtained from any ANR space Y, containing X
as a closed subset, by shrinking X to a point (or, equivalently, that (Y—X)t o)
is an ANR space. We prove that every pointed fundamental absolute neighor-
hood retract is an ANR divisor and establish a number of theorems showing
that ANR divisors have many properties in common with fundamental absolute
neighborhood retracts. An example due to Dydak shows that the class of ANR
divisors is much wider than the class of pointed FANR’s. '

Finally, in § 7 we utilize results of previous sections to shed new light
on Armentrout’s property UVW" [1]. It turned out that the class of UVW”"-com-
pacta, i.e., compacta that have property UVW" in every ANR space, can be
regarded as the n-dimensional approximation of the class of pointed funda-
mental absolute neighborhood retracts. Theorem 2 in [1] shows that under
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some restrictions an n-dimensional UVW"-compactum is an ANR divisor. Here
we prove that UVW7"-compacta of fundamental dimension <n are actually
pointed fundamental absolute neighborhood retracts.

This paper includes portions of Chapters V and VII of the authors’s
dissertation written under Prof. R. D. Anderson at LSU in 1975.

2. Preliminaries

We assume the reader is familiar with shape theory [2] and infinite-dimen-
sional topology [8]. The method of presentation and ideas for proofs of some
of our results are included in [5], [6], and [7] so that at some places details
will be omitted.

Let M and N denote non-compact locally compact spaces. A continuous
function f: M — N is a proper map provided f~1(A) is compact for every com-
pact subset 4 of N. Proper maps f, g: M— N are homotopic at « if for every
compact A N there is a compact BC M such that restrictions f|,,_p and g|y,_p
are homotopic in N—A. We shall say that N proper homotopy dominates
(homotopy dominates at o) M if there are proper maps f: M—N and g: N>M
with gof and id,, properly homotopic (homotopic at o).

Throughout the paper n3>0 is an integer, € is an arbitrary class of topo-
logical spaces, and €, a class of pairs (X, X;), where X is a topological space
and X, is its closed subset By " we denote a subclass of ¢ censisting of all
spaces in € with (covering) dimension <n. Let @, ?,, BB,, and #" denote
the class of all finite simplicial complexes, the class of all finite simplicial pairs,
the class {(B!, 8%, (B, S‘), .oy (B, S" D}, and the class {S°, S%, , S,
respectively, where Bf is the k-dimensional unit solid ball and S" 1 is its
boundary (k—1)-sphere.

3. C,movability at infinity — examples

The notion of a (¢-movable at oo non-compact locally compact space
from [6] is in this section generalized introducing €,-movable at oo spaces.
Since we consider homotopies defined on topological pairs (X, X,), there are
three different conditions that we can impose on restricitions of those homo-
topies onto X,. Thus, we get three versions of that concept called weakly
C,-movable, 8 -movable, and strongly €,-movable at o spaces. In the same way as
movable cornpacta are closely related via the complement theorem [6, Theorem
(4.2)] to /p-movable at o ANR’s we observe that FANR’s are related to
weakly ;2,-movable at .o ANR’s and pointed FANR’s are related to /,-movable
at oo ANR’s In presenting examples of spaces illustrating our definition we
improve Marde3i¢’s theorem [19] saying that an LC*~! compactum of dimen-
sion <n is movable.

(3.1) Definition. A non-compact locally compact space M is said to be

() weakly C,-movable at o,
(b) C,-movable at oo,
(©) strongly C,-movable at o,
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provided that for every compact set ACM, there is a compact set BD A with
the property that for every compact subset CO A4 we can find a compact set D
containing BUC such that given a map f: (X, X)—(M—B, M—D) of a pair
(X, X,) in @, into (M—B, M—D) there is a homotopy h: X>M—A4, 0<1L1,
with Ay=f, h (X)CM—C, and

@ hl 'Xo::f‘Xoa
() b (X)CM—C, 0<t<1, and A |x,=f]x.,
© hlx=flx, 0<t<1,

respectively.

(3.2) Examples. (a). For a class € let €2 denote the class of pairs

(X, o) where X&@. Then M is C-movable at oo if and only if M is é2-
-movable at oo.

(b). For a class € let 82 denote the class of pairs (X' %[0, 1], X x {0}V
UXx{1}) where X&¢. Then a space M is C-calm at oo [7] if and only if
M is weakly G:-movable at oo.

(¢). Let 6={X;, f;} be a direct sequence of finite polyhedra and let
Map (c) be its infinite mapping cylinder obtained by glueing mapping cylin-
ders cg maps f; together. Then Map (o) is strongly €,-movable at oo, for every
class &,.

(d). Let X be a closed subset of a compact space ¥ and assume that X
satisfies the isotopy compression axiom I-Comp (X, Y) [21]. Then Y—X is
strongly €,-movable at oo, for every class C,.

(¢). Let a countable discrete group G acts semi-freely on the Hilbert
cube O with a unique fixed point x,. Then the quotient space M =(Q—{x})/G
is strongly C%:-movable at oo, for all n>>0.

(3.3) Theorem. (a) A4 Z-set X in a compact ANR space N is an FANR
if and only if M =N—X is weakly p,-movable at .

(b) A Z-set X in a compact ANR space N is a pointed FANR if and only
if M=N—X is (P,-movable at .

Proof. (a) A standard proof (see [6, Theorem (4.2)]) can be given
using the fact that FANR’s coincide with strongly movable compacta [2].

(b) As in [6, Theorem (3.2)], without loss of generality, we can assume
N =0, the Hilbert cube. By [21] X is a pointed FANR if and only if X has
I-regular open neighborhoods. This clearly suffices (see Example (3.2) (d)).

The following theorem improves Mardesi¢’s result [19] stating that LCr1
compacta are n-movable because Z-sets in compact ANR’s whose complements
are /p"-movable at oo are n-movable [6] and )-movable at oo spaces are

"-movable at oo.

(3.4) Theorem. The complement M=Q—X of a locally (n— 1)-con-
nected Z-set X in the Hilbert cube Q is (#;-movable at oo.

Proof. Let ACM be an arbitrary compactum and let UCQ—A4 be an
open neighboithood of X such that }/={Q—CI(U), Q—A} is an open cover
of Q. Pick a refinement 2 of }/ such that Z/-close maps into Q are //-homo-
topic. Since X is an LC*~! compactum, the inclusion i: XC__, Q is a strong local
connection in dimension n—1 (see [16] for definitions and notation). Hence,
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there is a refinement 9 of 9 for which the assertion E (%2, 9%, n) holds
({16, Lemma 1J). In other words, given an at most n-dimensional finite simpli-
cial complex K, a subcomplex L of K, and maps g: L—X and h: K—Q
such that h|,=iog and & maps every simplex ¢ of K into some member of
the collection {¥ €|V X+ o}, then there is an extension h': K—X of g
such that for every simplex o of K we can find W& with ioh’ (6) Uk (c) CW.
The choice of 9 assures that 4 and A’ are homotopic in Q—4. The com-
pactum B=Q—U{VF&U|VNX+# @} is the one we are looking for. Indeed, if C
is any compactum in M containing A4, select a compactum D with respect
to BUC in the way analogous to how B was chosen with respect to 4. Let
A Q—0, 0<t<<1, be a deformation with A, (Q)CQ—X, A(Q—A)CQ—4,
A (Q—C)CQ—C, and 7| 4=id, for all #>0.

Suppose f: (K, L)—~(M—B, M—D) is a map of a pair (K, L) of finite
polyhedra, dim K<n, into (M —B, M—D). A restriction f|, is homotopic in
M—C to a map f: L—>X by the choice of D. Hence, by the homotopy exten-
sion theorem, f is homotopic in (0—B, Q—C) to map k: (K, L)—>(Q—B, XZ.
Then A4 is homotopic in (Q—A, M—C) to a map #': K—X, where h'|,=f.
Let f,:(K, L)~>(Q, A, Q—C) be a homotopy connecting f and A oh’. The
composition A,_pof; is a homotopy in (M—A, M—C) joining f and A0k’
With the help of the homotopy extension theorem it is easy to see that this
implies Q—X is G);-movable at oo.

The last example uses the concept of a (-trivial at oo space introduced
in [4]. A non-compact locally compact space M is C-trivial at o if for every
compact subset 4 of M there is a larger compact set B such that each
map f: X—>M—B of XE¢ into a component of M—B is null-homotopic
in M—A.

(3.5) Example. If a connected, locally connected, locally compact
space M has finitely many ends and is .#"-trivial at oo, then M is J3,-
-movable at co. ‘

Proof. Without loss of generality, we can assume M has only one
end. Let A be a compact subset of M. Pick BOA such that M—B is con-
nected and every map S¥*—M—B, 0<k<n, is null-homotopic in M—A. If
CDOA is a compact set, select a compact D )BUC so that M—D is connected
and any every map SK—~M—D, 0<k<n, is null-homotopic in M—(BUC).

Now, consider a map f: (B¥, S¥~)—(M—B, M— D), 0<k<n. By assump-
tion, there is a homotopy #,: S¥~'—>M—C with h,=f|S** and h (S*)=p=
=point EM—D. Define a map g on the boundary of B¥xI into M—B by

p t=13
g(x, t)={ht(x), xeS1, tcl, and
f), t=0.

The choice of B implies that g has an extension G:B*xI—>M—A. On the
space B*x {1}\US¥~1x[1, 2] define a partial homotopy into M—C of the
constant map into p on B* x {1} by taking 4, , on S¥~!x[1, 2]. By [13, p. 120],
that partial homotopy extends to a homotopy H:B*x[l, 2]->M—C. The
composition of homotopies G and H shows that M is J3)-movable at co.
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Assuming, in addition, that the space M in (3.5) is locally n-connected,
then by Theorem (3.4) in [4] M is actually (P"trivial at o and the above
proof can be applied to get that M is Ci’;—movable at oo. Imposing even stronger

condition that M is an ANR, by theorems (3.6) and (5.1) below, we can
directly conclude that M is strongly @;-movable at oo.

(3.6) Theorem. Let M be an LC" locally compact space. Then M is
strongly 73,-movable at if and only if M is strongly (#'-movable at .

Proof. A routine proof by induction is left to the reader.

4. C,-movability at infinity — theorems

In this section we shall prove three theorems describing closure properties
of the class of €,-movable at e spaces. They generalize corresponding results
from [6].

(4.1) Theorem. Let M be a (weakly) C,movable at o space and
assume N is either an ANR or C,is a class of ANR pairs. If M (homotopy domi-
nates at o) proper homotopy dominates N, then N is also (weakly) €,-movable
at oo,

Proof. We shall deal only with the more complicated case of weak
€,-movability at co. Let f:M—N and g:N—>M be proper maps such that
for every compact set K in N there is a compact K, DK and a homotopy
Hyg:(N—K,) x [->N—K joining the inclusion ix,, x of N—K, into N—K with
fog|n-x,- For a compact set 4 in N, pick a compact set B in M with
respect to A'=f"1(4,) using the fact that M is weakly (,-movable at o, and
put B=AUg 1 (B). If CDB is an arbitrary compact set in N, C'=B'Uf'(C,)
is a compact subset of M. Let D' DC’ be taken with respect to B’ and C’,
and let D=C,lUg~* (D).

Consider a map #:(X, X,)>(N—B, N—D) of (X, X,)cC, into (N--B,
N—D). Since the composition gok maps the pair (X, X,) into (M—B', M—D’),
by assumption, there is a homotopy G, : X —>M—A4', 1<t<2, with G, =goh,
G, (X)CM—C’, and G,'|x,=goh|x,. Define G,: X—>N—4, as foG,', 1<r<2.
Then G,=fogoh, G,(X)(_N—C,, and G,|x,=fog h|x,. Finally, let H,:X—
—~>N—A, 0<t<1, be the composition (H,),ch and let F;: X—>N—C, 2<1<3,
be an extension of the partial homotopy of G, over X, given by (H¢),_,oh|x,.
The join of homotopies H, G and F gives us a homotopy X x[0, 3]=>N—4
starting with 4 and ending with a map of X into N—C extending /|x,. Hence N
is weakly €,-movable at co.

With obvious modifications, the notion of a (¢-movable end of a non-
-compact locally compact space defined in [6] can be generalized to the notion
of a (weakly, strongly) €,-movable end. By a method used in the proof of
Theorem (4.11) in [6] one easily proves the following result.

(4.2) Theorem. A non-compact, locally compact, locally connected
space M is (weakly, strongly) C,-movable at o« if and only if M has finitely
many (weakly, strongly) C,movable ends.

The final theorem in the present section concerns finite ‘“‘complemented’
products. We first state a technical definition from [7].
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A closed subset A4 of a space X is strongly globally right (left) unstable
in X if for each triple (U, V, W), WCV U, of neighborhoods of 4 in X
thete is a map fi(U, V, W)->(U—A4, V—A4, W—A4) such that iof|,~id,
and iof~idy (foil|,_4~id,_4 and foi~id, ,), where i:U—AC__U is the
inclusion,

Note that a Z-set 4 in the Hilbert cube Q is both right and left strongly
globally unstable in Q.

(4.3) Theorem. Suppose either

(a) N, and N, are compact ANR’s, or

(b) N, and N, are compact and C, is a class of ANR pairs. Let X,CN,
and X,CN, be closed subsets. Put X=X xX,, N=N,xN,, M,=N,—X,,
M,=N,—X,, and M=N—X. Assume, further, that X, and X, are strongly
globally right unstable in N, and N,, respectively, and that X is strongly globally
left unstable in N. If M, and M, are (weakly) C,movable at o, then M is
(weakly) €,-movable at .

Proof. Let ACM be an arbitrary compact subset. Its complement N— A
is an open neighborhood of X in N. Pick open neighborhoods U, and U, of
X, and X,, respectively, so that ACN—(U, xU,). Put 4,=N,—U, and 4,=
=N,—U, and select B, DA, and B,DA, using the fact that M, and M, are
(weakly) €,-movable at . Put B=(B, x N,) (N, x B,).

Assume C is a compact set in M containing 4. Choose open neighbor-
hoods W, and W, of X, and X,, respectively, such that CCN—(W,x W,).
Put C,=N,—W, and C,=N,—W, and select corresponding compact sets
D,>B,UC, and D,D B,UC, applying (weak) €,-movability at oo of M, and M,.
Finally, let D= (D, x N,)U(N, x D,).

Now, consider a map f: (K, K,)—~(M—B, M—D) of a pair (K, K)eeé,
into (M—B, M—D). Let h,:(K, K)—(N,—B,, N,—D,) be a homotopy con-
necting h,=f, =, of, the projection of f onto N,, with A, : (X, K))—>(M,—B,,
M,—D,). The choice of sets B, and D, implies that there is a homotopy
& (K, K)—~M,—4,, M\—C)) (g;:K—+>M —A4,) such that g,=h,, g (K)C
CM,~C,, and g, |k, =h, |k, Superposition of homotopies 4, and g, when
crossed with f,—=m,of shows that there is a homotopy £ : (K, K)—~(U,xU,,
(M,—C) x (N,—B,)) (f;: K—>U, x U,) with the following properties.

M fo=1,

(2) LK)CW, x W,)—(X, x X}), and

B3) filk=Unlg)x (f;1x) and (4 |x) x (f;] &) is in (N,—D,) x (N,—D,)
homotopic to f|,.

By (a) (or (b)) in (3) we can, in fact, assume j‘1|Ko = f|k,- Since X is
strongly globally left unstable in N homotopy ﬁ can be assumed taking place

in M. To finish the proof it remains to perform the similar movement, this
time of the second coordinate while keeping the first coordinate unchanged,

of f;. '
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5. C,-movable at infinity ANR spaces

For ANR spaces the study of €,-movability at oo is greatly simplified
because on them (,-movability at c and strong €,-movability at o are equi-
valent provided €, consists of metrizable pairs (Theorem (5.1)). This equiva-
lence will be utilized in Theorem (5.5) where we prove that the Freudenthal
end-point compactification of a /2,-movable at o ANR space is an ANR space.
We also show that the class of ANR’s that are both tame at « (see [20], [11],
and [5]) and /p,-movable at co agrees with the class of finitely dominated
near oo ANR’s introduced by Chapman and Ferry [10] (Corollary (5.3)), and
that ¢€,-movability at « of an ANR depends only on shape properties of topo-
logical pairs in €, (Theorem (5.4)).

(5.1) Theorem. Let M be an ANR and let C, be a class of metri-
zable pairs. The space M is C,movable at « if and only if M is strongly
C,-movable at .

Proof. We shall prove that a ¢,-movable at « ANR space M is strongly
€,movable at . The converse is obvious.

For compact subsets 4 and C, CDA, of M select compact sets BDA
and DO BUC using the fact that M is €,movable at o. Consider a pair
(X, X,) in €, and a map f:(X, X))—>(M—B, M—D). Let f:(X, X)) >(M—A4,
M—C) (0<s<1) be a homotopy such that f,=f, f, (X)CM—C, and f|x, =
=flx,=fy|x- Let T denote the closed subset X x {0, 1}\UX,x[0, 1] of the
product P=X x[0, 1]. Define a homotopy g, (0<<r<1) on T as follows

-/‘O(x)’ xeX’ S=O,
8: (xa S): Ht (-x: S), xeXo’
Kt(x)’ xEXa §= 1,

where H: X, xIxI—-~M—C is an extension to all of X;xIxI of a partial
homotopy defined as f, on X, xIx{0} and as f, on X, x {0} x TUX,xIx{l1},
while K: X x {1} xI->M—C is an extension of a partial homotopy H,(x, 1)
of fi on X,.

It is easy to check that the homotopy g, is well-defined and continuous.
Since g,=f, extends to all of P it follows from the homotopy extension theorem
that g, also extends to a map G,;:Px[0, 1]—>M—A. The homotopy G,
connects f=f, with f; and is pointwise fixed on X,. Hence, M is strongly
C,movable at .

(52) Theorem. If M is a (p,-movable at o ANR space, then there is
a compactum A in M and proper maps g:M—int A—(M—int A) x [0, ) and
fi(M—int A) x [0, o0) M such that fog is properly homotopic to the inclusion
M—intAC_ M.

Proof. By [23], (4.1), (4.2), and (5.1), without loss of generality, we
can asume M is a locally finite countable simplicial complex with just one
Pp,-movable end.
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Let Ay= 2 CA;=ACA,CA,C--- be an exhausting sequence of com-
pact subpolyhedra of M such that for every index i>0 there is a homotopy
¢/ (M—int 4)—>M—int 4;_, (0<s<1) satisfying

¢, =the inclusion M—int4, C___. M—int 4
o (M—int A)CM—int 4;,,, and
o) | M—int 4;, ,=id, 0<i<lIL.

i—19

Define a proper map f: (M —int A) x [0, «o)—M as follows

;’_‘*_"}ocp'llo---ocp%ocp}(x), I<n<tg<n+1, xEM—intAd
foo =4 ,
ol (%), 0, xEM—int A.

In order to define g: M—int 4 —(M—int A) x [0, o), let r:M—int 4 —
—[0, ) be a proper map. Put g(x)=(x, r(x)) for x&M—int 4. Then g is
a proper map and fog is properly homotopic to the inclusion M—int 4 C__, M.

It is interesting to know when can we replace M—int4 by a finite
complex in (5.2) and thus get that M is finitely dominated near oo [10]. This
can be done if and only if M is tame at oo [20] (see also [11] and [5)]), i.e.,
provided that for every compact subset 4 of M there is a larger B such that
the inclusion M—BC_..M—A factors up to a homotopy through a finite
complex. :

(5.3) Corollary A tame at o ANR space M is (p,-movable at « if
and only if M is finitely dominated near oo.

Proof. If M is tame at o and weakly /p,-movable at oo ANR space
in the proof of (5.2) we can assume that the complex M—int4 is dominated
by a finite complex K [11, Lemma 5.1]. Hence, K x [0, o) proper homotopy
dominates (M —int 4) x [0, o) [10] so that there are proper maps a: M—int 4—
—Kx[0, ©) and b:Kx[0, w)—>M with boa properly homotopic to the
inclusion of M —int 4 into M., In other words, M is finitely dominated near oo.
The other implication is immediate.

We showed in [6, Theorem (4.10)] that the question of whether an ANR
is C-movable at oo depends only on shape properties of spaces in the class €.
The shape theory of arbitrary topological spaces as described by Kozlowski [17]
was used. His construction and our proof and a definition of a shape domi-
nation for classes of spaces also apply to pairs of spaces so that we obtain
the following generalization.

(5.4) Theorem. If an ANR space M is C,movable at co and the
class C, shape dominates the class of pairs D,, then M is also D,-movable at o .

The main reason for introducing movability at infinity with respect to
classes of topological pairs is the next observation.

(5.5 Theorem. If an ANR space M is (P, movable at oo, then its
Freudenthal end-point compactification FM is an ANR space.
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Proof. By Edwards’ theorem [8], Chapman’s Triangulation theorem [8]
and (4.1) we can assame M is a locally finite countable simplicial complex.
By (4.2), M has finitely many ends so that, deleting the interior of a suf-
ficiently large compact subpolyhedron A4, M—int A decomposes into finitely
many disjoint one-ended and /p,-movable at co subpolyhedra. Hence, we can
assume M is a strongly /2,-movable at oo one-ended locally finite countable
simplicial complex.

Under these assumptions we shall prove that M J o is an ANR space by
showing that it is strongly contractible at the point oo [15], i.e., that for
every open neighborhood U of o« in M{J o there is a neighborhood V' which
is contractible inside of U to the point o by a contraction that keeps the point
oo fixed at all levels.

Given a neighborhood U of « in M{J, put 4)=M—U and select an
exhausting sequence of compact subpolyhedra 4,CA4,=ACA,CA,C -+ and
homotopies ¢/ as in (5.2). Let V=(M—A)Uo and define a contraction
H:V x[0, 11U as follows.

®3, () 0<t<1/2, vEM—A,
cPlf_k2+k(k+1)t°(f’lf—1°‘ sl (), vEM—A,

H(v, )= (k—D)k<t<k|k+1), k>1,
o, V=0, 0<t<1,
o, vV, t= 1.

(5.6) Corollary. The one-point compactifications M\Joo of an (P,
-movable at o ANR space M is an ANR space.

Proof. Since EM, the end set of FM, is a finite discrete space and
M\ o==(FM)/EM, the corollary follows immediately from (5.5) (see section
6 below).

6. ANR divisors

In [15] Hyman defined the class of ANR divisors and proved several
theorems describing properties of spaces belonging to this class. Here we shall
consider compact ANR divisors. Corollary (5.6) of the previous section implies
that every pointed FANR space is an ANR divisor (Theorem (6.2)). The
converse of this result is not true because in (6.3) we use an example con-
structed by J. Dydak for other purposes to show that the class of ANR divi-
sors is wider than the class of pointed FANR’s and includes some rather
pathological spaces. On the other hand, we establish a number of results
about compact ANR divisors analogous tho the corresponding results about
FANR’s. They improve most of Hyman’s theorems.

(6.1) Definition ([15]). A compact metric space X is called an ANR
divisor provided that the space Y/X, obtained from an ANR space Y con-
taining X as a closed subset by shrinking X to a point, is an ANR space.

The main result of [14] implies that for X to be an ANR divisor it
suffices to find only one such ANR space Y for which Y/X is an ANR.
Hence, by embedding a pointed FANR as a Z-set in the Hilbert cube ¢,
combining (3.3), (5.1), and (5.6) we get the following.
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(6.2) Theorem. Every pointed FANR space is an ANR divisor.

The class of ANR divisors is wider than the class of pointed FANR’s
as the following example, communicated to the author by J. Dydak, shows.

(6.3) Example. In [12] Dydak constructed a space X=X, UX, being
an FAR such that X;NX, is a pointed FANR (in fact, a circle) and X, is
not an FANR. By the Sum Theorem (6.7) (b) below, X, is an ANR divisor
because X and X;NX, are ANR divisors (by (6.9) and (6.2), respectively).

In attempting to characterize ANR divisors it is helpful to look for
properties of FANR’s that are also possessed by ANR divisors. The next four
theorems handle shape invariance, cohomology finitevess, sums, and adjunction
spaces.

A compactum X strongly shape dominates a compactum Y, in notation
Shy (X)=Sh(Y), if the complement Q—X' of a Z-set copy X’ of X in Q
proper homotopy dominates the complement Q—Y’ of a Z-set copy Y’ of Y
in Q. By [9}, Sh(X)=Sh(Y) implies Sh, (X)>Sh,(Y), and by (5.3) and [10],
strong shape domination and shape domination coincide on the class of
pointed FANR’s. Also, one easily proves that Sk, (X)>=Sh,(Y) if X homotopy
dominates Y so that (6.4) below extends (4.4) in [15].

(6.4) Theorem. If Sh(X)=Sh,(Y) and a compactum X is an ANR
divisor, then Y is also an ANR divisor.

Proof. Consider X and Y as Z-sets in ¢ and put M=Q—X and
N=Q—Y. Let f: M—N and g: N—M be proper maps with fog proper homo-
topic to idy via proper homotopy 4.

Let U be an open neighborhood of o« in N|Joo. Put A=N—U and
select a compactum B A4 such that A (N—B)C N— A, for all t. The set
A'=f-1(B) is a compactum in M. Since M{J e is an ANR, there is a com-
pactum B'DA’ such that V'=(M\Jo)—B' is contractible rel oo (see the
proof of (5.5)) in U'=(M{J) w)—A'. Finally, put B*=g"1(B’) and V=
=(NU o )—B* Then V is contractible rel o in U, i.e., N{Uow is strongly
locally contractible at the point oo and therefore an ANR [15].

The Cech cohomology of the suspension of an ANR divisor is iso-
morphic to the Cech cohomology of an ANR space as a consequence of the

following isomorphism than can be derived applying various isomorphisms in
[22, Chapter VI].

(6.5) Proposition. For a closed subset X of the Hilbert cube Q and
an arbitrary abelian group G there is an isomorphism

Hi (Q—X)Uw; G)=Hi~1 (X; G)
of reduced Cech cohomologies.
(6.6) Corollary. A compactum X is an ANR divisor if and only if X
has finitely many components each an ANR divisor.

(6.7) Sum Theorem. Let X be the union of compacta X, and X,
intersecting in a compactum X,

@ If X,, X,, and X, are ANR divisors, then X is an ANR divisor.

(b) If X and X, are ANR divisors, then both X, and X, are ANR divisors.
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Proof. Embedd 4 into Qx[—1, 1] so that X,C Q,=0x[—1, 0],
XNQOx{0}=X,, and X,CQ0,=0Qx[0,1]. Then Y=(Q@x[—1, 1])/X can be
regarded as the union of Q,/X, and Q,/X, intersecting in @ x {0}/X,. Hence
(a) and (b) follow from corresponding properties of ANR spaces [13].

(6.8) Adjunction Theorem. Suppose X and its closed subset A
are ANR divisors. If f:A—Y is a map of A into an ANR divisor Y, then the
adjunction space X\ j;Y is an ANR divisor.

Proof. Let Q,CQ be a Z-set copy of Q in Q and embedd X into Q
such that XM Q,=4. Let ¥ be a Z-set in Q,~=~Q. Since @, is an absolute
retract and Y is a Z-set, there is an extension f: Q,— @, of f with ffl(Y)=A.
The space QUy, @, is an absolute retract [13] containing a copy of XU Y.

But (QU, 0,)/(XU,Y) can be considered as (X/X)U,: (Q,/Y) where f1:Q, /A~

—Q,/Y is the induced map. The later space is an ANR by [13]). Hence,
XU,y is an ANR divisor.

(6.9) Remark. Everything we said about compact ANR divisors holds
also for compact AR divisors (defined analogously). Hyman [15] proved that
FAR’s are AR divisors (this also follows from the remark following the proof
of (3.5), (5.1) and (5.6)), but the converse is an open question. It follows
from (6.5) that a compactum X is an AR divisor if and only if X is an
acyclic ANR divisor.

7. FANR, spaces and property UV W”

This final section presents an application of results in §§ 3 and 4. It
treats Armentrout’s property UVW" and shows that compacta having that
property are n-dimensional approximation of pointed fundamental absolute
neighborhood retracts.

(7.1) Definition. ([1]). A compactum X has property UVW" in a
space N, in notation XEUVW?"(N), if and only if for each open neighborhood
U of X in N, there is an open neighorhood V of X such that for each open
neighborhood W of X, there is an open neighorhood Z of X such that for
each k with 0<<{k<n and each map of pairs f:(B¥, S¥~1)—>(V, Z) there is a
homotopy H: (B* x I, ¥~ xI)— (U, W) such that (H, (B¥), H, (S*")CW, Z).

By a technique of [6] one routinely proves.

(7.2) Theorem. A4 Z-set X in an ANR N has property UVW™" in N if
and only if M=N—X is jgz-movable at oo.

It is equally easy to establish that statements XCUVW"(N) and X x {0}&
CUVW"(N x Q) are equivalent. Hence, applying a method of glueing the
product N x[0, 1] of a Q-manifold N and the unit segment [0, 1] with the
Hilbert cube Q along N x {1} (see [11] and [6]), it follows from (7.2) that
XeUVW"(N) for some embedding of X into an ANR N implies that con-
dition (7.1) holds for every ANR space N and every embedding of X into it.

We shall say that X is an UVW7”-compactum provided XcUVW"(N) for
every ANR space N containing X as a closed subset.
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Combining theorems (5.1), (3.6), and (7.2) we see that X is an UVW"-
-compactum if and only if X is an FANR, space. Here by a (weak) FANR,
space we mean a compactum whose Z-set copies in the Hilbe.t cube Q have
(weakly) /#/-movable at oo complements. Equivalently, weak FANR,’s are
compacta satisfying the condition of strong movability [2] only up to dimen-
sion n.

(7.3) Examples. (a). An LC*"! compactum is an FANR, space (see
Theorem (3.4)).

(b). An approximately n-connected space is an FANR, space (see
Example (3.5)).

(c). Since a weak FANR, space is n-movable, the solenoid is not a weak
FANR, space.

In the special case when ¢, is the class 3 results of §4 together
with (7.2) imply the following three theorems.

(7.4) Theorem. If a (weak) FANR, space X (shape dominates) strongly
shape dominates a compactum Y, than Y is a (weak) FANR, space.

(7.5 Theorem. A compactum X is a (weak) FANR, space if and only
if X has finitely many components and each of them is a (weak) FANR, space.

(7.6) Theorem. The product X,x X, is a (weak) FANR, space if and
only if both X, and X, are (weak) FANR, spaces.

The connection between this section and § 6 is provided by Armentrout’s
Theorem 2 in [1]. In our terminology, he proved that an FANR, space X
which can be embedded in an ANR space Y such that Y/X has dimension n
is an ANR divisor. In particular, every n-dimensional FANR,, , space X is
an ANR divisor because (see [3], [18], or [11]) X embedds into an (n+ 1)-
-dimensional absolute retract.

The very definition of FANR, spaces together with the above observa-
tion suggest that these spaces should be FANR’s when their dimension is
<n—1. Our last theotem confirmes that suggestion.

(7.7 Theorem. If an FANR, , space X has fundamental dimension
Fd(X)<n, then X is a pointed FANR space.

Proof. Consider X as a Z-set in the Hilbert cube Q. We know (see [5])
that Q—X is proper homotopy equivalent to Map (s), the infinite mapping
cylinder [11], where o={X;, f;} is an inverse sequence of n-dimensional finite
polyhedra with X, being contractible. Since X is an FANR,,, space, Map (o)
is strongly @;“-movable at oo. But, for Map () this clearly implies strong

,-movability at co. Hence, Q—X is strongly /p,-movable at oo (see (4.1))
and, therefore by (3.3) (b), X is a pointed FANR space.

Added in the proof. Some of our results were independently obtained by Y.
Kodama in his preprints “Fine movability” and “A characteristic property of
a finite dimensional pointed FANR” using entirely different techniques.

The characterization of compact ANR divisors of a finite fundamental
dimension was recently given by J. Dydak in the preprint entitled “On LC”-
-divisors”.
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