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0. Introduction

A partition of the vertex set of a graph G into two (disjoint) subsets
(one of which may be empty) will be represented as a colouring ¢ of vertices
by two colours (say black and white) such that the vertices from the same
subset are coloured by the same colour. The graph G together with its colou-
ring ¢ will be denoted by G,. Switching a graph G with respect to a colouring ¢
(or partition ¢) means deleting all edges between black and white vertices in G,
and introducing.a new edge between a black and awhite vertex whenever they
were nonadjacent in G, [6]. The graph obtained after switching will be denoted
by ¥ (G,). Graphs G ‘and H are sw1tch1ng equivalent if H= .7 (G, for some
colouring ¢. Switching relation ~ is an equivalence relation in the set of
graphs and we can speak about switching classes of graphs.

In this paper we shall find all graphs which are switching equivalent to
their line graphs, i.e. we shall solve the ‘““generalized” graph equation L (G)~G.
The ‘“ordinary” graph equations were considered, for example, in [2], [3], [4],
where the isomorphism relation was taken as the equality relation = for graphs.
Here the switching relation plays that role and normally the solutions should
be switching classes of graphs. But, since the operation L is defined in the
set of graphs and not in the set of switching classes, we must consider the
unknown G in L(G)~G rather as a graph than as a switching class. _

The corresponding ““ordinary” graph equation L (G)= G was solved in [7].
The solutions are regular graphs of degree 2. All these solutions are also the
solutions to L(G)~G. Let us call such solutions ordinary. As we shall see
later there are some more solutions and they will be called exceptional.

Together with a solution G we shall always give a colouring ¢ such
that L (G)=.% (G,). The ordinary solutions can be considered as monochromatic
and in the exceptional solutions G always both colours occur and, of course,
-we have L (G)#G.

All solutions to L (G)~G obviously have the same number of vertices
and edges. If a solution is connected it is unicyclic graph. This case will be
treated in Section 1. Disconnected solutions are described in Section 2. In
Section 3 we summarize the results and give some comments.
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In the next, G will always denote the solution to L(G)~G.

In the proofs we primarily use Beineke’s characterization of line graphs
by forbidden induced subgraphs [1]. Since L(G)=,.% (G,), G, must not contain
several graphs derived from Beineke’s forbidden subgraphs by switching. In
this way the following lemmas (0.1—0.4) can be easily verified.

Lemma 0.1. If* 4K,CG then it is forbidden to colour three vertices
of 4K, by ome colour and the fourth one by another. If, in addition, C,J G, then
all four vertices of 4K, are coloured by the same colour.

Corollary 0.1. If the vertices v,, v,, v5, v, of G are mutually nonadja-
cent and if the vertex vy is not adjacent to vy, v,, vy, then the vertices v, and v5 -
have the same colour.

Lemma 0.2. If K, ,CG, then exactly threevertices of K, , are coloured by
one colour and the fourth one by another. If, in addition, C,J G, then the *“‘central”
vertex of K, , is coloured by one colour and the remaining vertices by another.

Corollary 0.2. If K, ;UK,CG, then the “central” vertex in K, , is colo-
ured by one colour and all other vertices in K, ,\ UK, are coloured by another colour.

Lemma 0.3. If C,CG, then the colouring in which exactly three vertices
of C, are coloured by the same colour, is forbidden. ‘

Lemma 0.4. The colourings of G, in which G, contains as a (coloured)
induced subgraph any ome of the graphs of Fig. 0.1, are forbidden.
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Fig 0.1.

Lemma 0.5. If G has an odd number of vertices then the number of
vertices of an odd degree is divisible by 4.

* C denotes . the relation ‘““to be an induced subgraph”, whlle< denotes the relation “to
be a subgraph (not necessarily induced)”. ‘
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Proof. Let d,, d,, ..., d, be the vertex degrees of G. Then*, g (L (G)~=
)4
=1/2 5 d?—q(G). If G is switched with respect to any of its vertices the

i=1
parity of the number of edges is not changed. The same then holds for
any switching. Since L(G)~G, q(L(G)) and ¢(G) are of the same parity,

14 .
1/2 > d? is even, and the assertion of the lemma follows immediately.
=1

Lemma 0.6. (cf. [8]) For all graphs in the switching class of a graph
with an even number of vertices, the dissection of this number into the number of
vertices of an even and of an odd degree is the same.

For all definitions and notation not defined here see [5].

1. Connected solutions -

Let us consider now connected graphs G satisfying L (G)~G. As pointed
out, G is then a unicyclic graph. Let us assume that G is different from a
cycle, since we are interested in exceptional solutions. :

Lemma 1.1. The maximal vertex degree in G is 3.

Proof. It is sufficient to show that K, , and K, ,+x are not induced
subgraphs of G. Suppose the contrary.

1° Let K, ,CG. Let v, be the “central” vertex of K, , and v, v,, v, v,
its neighbours in K, ,. According to Lemma 0.2, v, is coloured say, by black
colour and its neighbours by the white one. Suppose first, G, has no black
vertex different from v,. L (G) is, of course, connected and hence % (G,) should
also be connected. That is possible only if any of the vertices v,, v,, v;, v, has
a white neighbour. Since G is unicyclic, there exist three such neighbours such
that neither of them is adjacent to v, or mutually adjacent. But that contra-
dicts Lemma 0.1. Thus we conclude that there exists a black vertex in G,.
different from v,.” According to Lemma 0.1 it is adjacent to two of vertices
Vi» Va5 V5, ¥, say, v, and v,, and hence it must be unique. However, according
to Lemma 0.2, v, and v, cannot be adjacent to white vertices. Then v, and v,
are isolated in % (G,) and therefore K, ,7G.

/ 2° Let K, ,+xCG. Denote the vertices of K, , as earlier by vy, vy, ¥5, V5, v,
“ and let the edge x connect v, and v,. Let v, be coloured black. Since C,<(G,
¥y, ¥,, Vv, are white according to Lemma 0.2. Due to K,CL(G) and K,(G,
G, contains as an induced subgraph a monochromatic triangle and an isolated
vertex of another colour (K,UK,) or two isolated monochromatic edges of
different colours (2K,). Since the unique triangle v,, v;, v, is not monochro-
matic, G, contains together with the white edge v,v, also a black edge u, u,.
Consider now the three nonadjacent white vertices v,, v;, v, and one of black
vertices u,, u, (that which is not adjacent to the previous three vertices). This
is a contradiction to Lemma 0.1 and therefore K, ,+x{ G.

This completes the proof.

*, p (H), q () denote the number of vertices, edges of H, respectively.
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Corollary 1.1 G, does not contain a monochromatic triangle and an
isolated vertex of another colour as well as two isolated edges of different colours
as induced subgraphs.

Lemma 1.2. If G contains a triangle, then there are no vertices of
degree 3 outside the triangle.

Proof. Suppose the contrary that there exists a vertex v of degree 3
outside the triangle. Since C,<(G, acoording to Lemma 0.2, v can be consi-
dered as black and its neighbours as white. Let u be the vertex of the triangle
- which is the nearest to v. If* d(u, v)>>2, then because of Lemma 0.1 all the
vertices of the triangle different from u and all the vertices of the unique path
between u and v must be white. The vertex u must be black because of
Corollary 1.1. If d(u, v)>>3, we immediately have a contradiction to Lemma 0.1.
Let d(u, v)=2 and let w be the vertex adjacent to both u and v. It cannot
be adjacent to white vertices because of Lemma 0.2. There is no more black
vertices in G, except for u and v because of Lemma 0.1. However, % (G,) is
now a disconnected graph. If d(u, v)=1, G, contains one of the coloured
induced subgraphs shown in Fig. 1.1. Let us discuss these three possibilities.

v v
u ‘U
1) 2) 3)
Fig. 1.1.

1° In this case G, does not contain any black vertices more in accordance
with Corollary 1.1 and Lemma- 0.2. ;% (G,) should be connected and this will
be the case if the neighbours of v are adjacent to at least one white vertex.
But such a configuration is impossible according to Lemma 0.1.

2° Since this subgraph is not a solution for itself we should add new
~vertices. Concerning vertices of the triangle, the only extension is by a new
white vertex adjacent to the black vertex of the triangle (by Lemma 0.1) and
this gives no solutions. By similar reasons the vertices adjacent to v can be
s«continued” only by one vertex and this does not give any solution.

3° Again by Lemma 0.1 and Corollary 1.1 this subgraph cannot be
extended to a solution, and concerning itself it is not a solution.

This completes the proof.

* d(u,v) is the distance between the vertices u and v.
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According to Lemma 1.1 and 1.2, if G contains a triangle then G can
be obtained from a triangle if we add to each of its vertices at most one
hanging path.

Lemma 1.3. If G is obtained from a triangle by adding three paths,
then G is the graph E, of Fig. 3.1.

Proof. The number of vertices of an odd degree is 6 and according
to Lemma 0.5 the number of vertices p(G) is even. Therefore, according to
Lemma 0.6, G and L (G) have the same dissections. The dissection of G is
6+ (p (G)—6) and the dissection of L(G) is 2k+ (p (G)—2k), where k (0<<k<3)
is the number of paths, added to the triangle which are longer than 1. It
follows that 6 = 2k or 6 =p(G)—2k and we have the following cases: 1° k=0,
p(G)=6; 2° k=1, p(G)=8; 3 k=2, p(G)=10; 4° k=3, p(G)=10. In the
first case we have the unique solution represented by the graph E, in Fig. 3.1.
In the cases 2°, 3° 4° we can find some possible graphs G or their subgraphs
and by using Lemma 0.1 it can be easily checked that they cannot be satis-
factorily coloured. This completes the proof.

Lemma 1.4, If G is obtained from a triangle by adding two paths, then G
is one of the graphs E,, E,, E, of Fig. 3.1.

Proof. It can be easily checked that the graphs E,, E,, E, of Fig. 3.1
are the solutions. Let /; and /, be the lengths of the paths added. If />4
and [ >1 (i#j, i, j=1, 2), then according to Lemma 0.1 all the vertices of G,
are of the same colour except for ;=4 and /;=1. In the last case the vertex
of the trlangle to which the path of length i is added, can be of another
colour. But in this case % (G,) is disconnected. For /;=3 and 1</;<<3 we get
three graphs which are not solutions as follows by using Lemma 0.1 and
the direct checking. This completes the proof.

Lemma 1.5. If G is obtained from a triangle by adding one path, then G
is one of the graphs E;, E; of Fig. 3.1.

Proof. Similarly to Lemma 1.3., the number of vertices of an odd
degree is not divisible by 4 and G has an even number of vertices. The dis-
sections for G and L(G) are 2+(p(G)—2) and 4+ (p(G)— 4), respectively,
if G#K,;+x. G=K,;+x is a solution and the only possibility is then p (G) =
“which gives another solution. This completes the proof.

Lemma 1.6. If the girth of G is 4, then G does not exist.

Proof. Suppose the contrary. Since G#C, we have C,-K,C G.* By
Lemmas 0.2 and 0.4 (see F; of Fig. 0.1) the vertices of C, cannot be all
coloured by the same colour. Due to Lemma 0.3 the distribution of colours
3+1 is forbidden and hence it can be only 2+2. If two adjacent vertices
of C, would have the same colour then one of the forbidden colourings from
Lemmas 0.2 and 0.4 would appear. Thus the vertices of C, are coloured in
black and white alternatively (when going around the quadrangle) Now, observe

*, For the dot-product, see [5] p.23.
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the vertex outside C, adjacent to a vertex of C,. By Lemma 0.2 it must be
coloured different " from its neighbour on C,. Further, since K,CL(G) and
K,7 G, G, must contain a monochromatic edge and an isolated vertex of
another colour. Clearly, the monochromatic edge cannot have vertices belonging
to C,. If the vertex of this edge which is closer to C, is at distance greater
than 1 from the nearest vertex of C,,
then K, —x(C % (G,) and consequently
K,CG (contradiction). Thus G, has
a coloured induced. subgraph repre-
sented in Fig. 1.2. This subgraph
— O is not a solution since u and v are
isolated after switching. However,
u and v cannot be adjacent to some
white vertices and so G, must contain
more than two black vertices, but
Fig. 1.2. due to Lemma 0.1 it is impossible.

' This proves the lemma.

Lemma 1.7, If the girth of G is greater than 4, then G does not exist.

Proof. Suppose first that G has at least two vertices of degree 3.
Let u;, v, be two of them chosen so that d(u,, v,) is as small as possible.
Then the graph of Fig. 1.3 is a subgraph of G. If 2<d(u,, v»,)<<3 at most
one edge only between u; v; (i, j=2,3) can exist. By Lemmas 0.1 and 0.2,

Uz

Fig. 1.3.

and Corollary 0.2, vertices u,, v, are, say, black while their neighbours are
white. Also it follows that d(u;, v,)==1. By Lemma 0.1 all the vertices on the
path u,—v, are white and d(u,, v)<3. When d(u,v,)=2, let w be the
vertex adjacent to both u, and v,. Clearly, w has no other neighbours. Due
to Lemma 0.1, except for u,, v, there are no other black vertices. Therefore, w is
isolated in .7 (G,). Hence, there is at most one vertex of degree 3 in G. This
together with Lemma 1.1 immediately yields that G consists of a cycle with
a hanging path of length / added to a vertex of the cycle. As in Lemmas 1.3
and 1.5 we can again apply Lemmas 0.5 and 0.6. Since for />>2 the dissections
for G and L (G) are 2+ (p(G)—2) and 4+ (p(G)—4), respectively, we have
p(G)=6, a contradiction. For /=1 we can easily check that such graphs are
not solutions. This completes the proof.

Hence there are exactly 6 connected exceptional solutions (see graphs
E., ..., E; of Fig. 3.1). '
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2. Disconnected solutions

Consider now disconnected exceptional solutions G of L(G)~G. The
number of independent cycles of G coincides with the number of components of G.

Lemma 2.1. G has at most three components.

Proof. Suppose G has at least four components. Since G, is coloured
by two colours, we can choose four components and take one vertex from
each of these components so that these four vertices are not of the same colour.
By Lemma 0.1 two vertices are coloured by one colour and the other two by
another one and there are exactly four components. By the same lemma all
the vertices in each component have the same colour. Since G contains at least
one edge we get F, from Fig. 0.1. This completes the proof.

For the next we shall take the following conveniences for the components
of G,. A component of G, is defined to be of the type B(W) if all its ver-
tices are black (white) and it is of the type BW if it contains black as well
as white vertices.

‘Lemma 2.2. G cannot have three components.

Proof If G has three components then the following cases are possible.

1° All components are of the type BW. L(G) has three components and
& (G,) is connected, a contradiction.

2° Two components are of the type BW and the third one is of the type
W (or B). L(G) has at least two components and 7 (G,) is connected, again
a contradiction.

3° The types of components are BW, B and W. Now % (G,) is connected
and L (G) is connected only if the components B and W are reduced to iso-
lated vertices. By Lemma 0.1 all the vertices of the same colour in the BW
component are mutually adjacent and by Lemma 0.4 (see F, of Fig. 0.1) every
vertex of one colour is adjacent to all vertices of another colour except perhaps
for one vertex. Now, observing that G has three independent cycles we imme-
diately get that in this case there are no solutions.

4° One component is of the type BW and the other two are of the type W
(or B). By Lemma 0.1 all the vertices of different colours in the BW compo-
nent are adjacent and the other two components are complete graphs. Now
P (G,) has at least two components and therefore at least one of monochro-
matic components should contain at least one edge. By Lemma 0.4 (observe
F, and F, of Fig. 0.1) the BW component must not contain a mono-
chromatic triangle of the black colour as well as two nonadjancent vertices of
the black colour. Therefore, the BW component contains at most two vertices
of the black colour and they must be adjacent. Hence*, G=(K;VH)UK,, UK,
for some H and some i&{l, 2}, where max (m, n)>1. Therefrom we have

L(G)=L(K,VH)UL(L,)UL (K4) and . (G)=HUKV(K,UK,)).
Now it can be easily seen that L~ (K;V(K,UK,)) (if it exists) is always
different from K,V H, K,, and K,. '

*5 y denotes the join of graphs [5].
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5° Two components are of the type W (B) and the third one is of the type
BW). Now ,#(G,) is connected and must contain two isolated vertices, i.e.
G=H\J2K, for some H being connected. Since .7 (G)=L(G) we have
L(H)=Ky(K,\UH) or 2K,VH. In the first case, since K, , is a forbidden
subgraph for line graphs, it follows that H is a complete graph. However, it
can be easily seen that L (K))=#K, ,-K, -for any s. For the other case due to
Beineke’s theorem K, and 3 K, are forbidden as induced subgraph in H and
now it is easy to see that there are no solutions. This complets the proof.

Now consider the case when G has two components and consequently
just two independent cycles.

Lemma 2.3. If G has two components, both of them containing an edge
then-G is the graph E, of Fig. 3.1.

Proof. Let us consider the following three cases:

1° Both components are of the type BW. Now L (G) is disconnected and
has exactly two components, while ,% (G.) has the same property only if in
both components each vertex of one colour is adjacent to every vertex of another
colour. Let n,, n, (m,, m,) be the number of white (black) vertices in the first
and in the second component, respectively. Since p (& (G))=p(L (G)) and
since G, contains at least two adjacent vertices of the same colour (otherwise
(.5” (G,) could not contain a triangle), we have n, +m, +n,+m,=n, m, +n,m,+1,
ie. (n,—1)(m—1)+(n,— 1) (m,— 1< 1. We may assume 7, = 1. Then n,= m2—2
or min (n,, m,)=1. By Lemma 0.1 and having in mind that the maximal vertex
degree of G is greater than 2, G is one of the following graphs:

CoUK, 5 +%), (K~ 0 UK, (=1, 2), Ky ,UQKK,) (=1, 2),
(Ko +X)UK,+X) (s, 1=2, 3, s+1#£4).

By direct checking we find the only possibility G=K, ,I(K,—X).
2° One component is of the type BW and another of the type W (or B).

Now L (G) is again disconnected and has two components and % (G.)
should have the same property. This will be the case if the white vertices
of BW component induce a. graph having n>>1 components so that each ver-
tex of only one white component is adjacent to all black vertices of G,
while the vertices of other white components (if they exist) are adjacent to
at least one but not all black vertices of G,.

Suppose n=1, i.e. the subgraph induced by white vertices in BW com-
ponent is connected. Now, having in view the earlier mentioned notation, we
have that n,+m, +n,>nm +n —14+n,—1, i.e. m;(n,—1)<<2 and therefrom.
1<n,<3. For n,=1 % (G,) has an isolated vertex and hence G must have an
isolated edge, i.e. m;=1 or n,=2. In both cases the problem yields to the
graph equation L (H)=K,VH which according to [9] has no solutions. For
n,=2 we have m,<2. Now, white vertices in BW component. induce an edge
which is in % (G,) an isolated edge. Clearly, W component must be K, ,. So
we get that G=XK, ,lU(K,~—x) and this is a solution already registred. For
n,=3 we have m; =1 and BW component is K,—x while the W component
by a similar reasons as above must be P,. By direct checking we get that
G=(K,—x)UP, is not a solution.
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Assume now that n>1. Let G,,..., G, denote the components induced
by white vertices in BW component of G, and let G, be the component such, K, UK,.
that all its vertices are adjacent to all black vertices of G, which considered
themselves induce a graph G,. We shall also denote the BW component by H,
and the W component by H,. By Lemma 0.1, H,=K, (s>1). Thus comparing
L(G) and ¥ (G,) we have L(H)UL(H,)=G,\UH, where H, is a component
of Oj” (G,)- The possibility L (H,)= H, leads to the contradiction, since K, ,C H,
and K,,,¢ L(H,). So let L(H,)=G, and since G has just two independent
cycles G,=K, and H,=K,. Further, due to graphs F; and Fy of Fig. 0.1 G,
has at most one edge, and due to Lemmas 0.1 G, has at most three vertices.
Thus G, is one of the following graphs K. K,, 2K1, K, UK,.

If Gy=K, (Kz) then (G, contains K, (K,) as an induced subgraph, so
that K, (K,) has just one common vertex (edge) with the rest of the graph.
In both cases, since L(G)=.%(G,) it follows that G has K, ; as an induced,
subgraph, so that just two edges of K, , are pendant Now, by using Lemma
0.2, the central vertex of K, , must be black and its nelghbours are white. So
if G, has only one black vertex then % (G.) would have two isolated vertices
a contrad1ct10n while in the case when G, has two adjacent black vertices
the contradiction appears again due to Lemma 0.2.

If G,=2K,, then ¥ (G, contains K,—x as induced subgraph so that
only the vertices of degree 2 are joined to the rest of the graph. Since L (G)=
=.%(G,), G has K,. K, as an induced subgraph, only its vertex of degree 1
bemg connected to the rest of G. The vertices of K, may not all be white
since the graph F, of F1g 0.1. would appear in G,. It follows that the vertex
of degree 3 in K -K, is black, others being whlte So we can take G,=K,
and G, must ex1st providing the second cycle of G. But then the graph F6

cof F1g 0.1. appears, a contradiction.

"Now let Gy=K,UK,. By the graphs F, and F; of Fig. 0.1, each (white)
vertex from some G; (i>1) must be adjacent to the (black) vertex isolated in
G,. By Lemma 0.1 and since G has just two independent cycles, there are at most
two such white vertices and they are adjacent. If there are just two, we get
the graph F, of Fig. 0.1. The remaining case does not give a solution.

3° One component is of the type W and another one of the type B. L(G)
is disconnected and .7 (G.) is connected, a contradiction.

This completes the proof.

Lemma 2.4. If G has two components, one of which is an isolated ver-
tex, then K, .7 G.

Proof. Suppose the contrary that K, ,CG. Assume that the isolated
vertex is white. By Corollary 0.2 the “central” vertex v, of K, , is black and -
other vertices v, v,, v, of K, 1,3 are white.. Suppose G, contains one black
vertex more. By Lemma 0.1 it is adjacent to at least two of vertices v, v,, v,.
Therefore G, contains one of the induced subgraphs represented in Fig. 2.1.
In all three cases G, cannot contain black vertex more because of Lemmas
0.1, 0.2 and because of the fact that G has two independent cycles. Having
in view that the white vertices of degree 2 in Fig. 2.1 cannot be adjacent to
some white vertices (because of Lemma 0.2), it follows that % (G,) is discon-
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nected, while L (G) is connected. Hence, let G, have only one black vertex.
In order to avoid that the vertices v;, v,, v, become isolated in .%(G,) each
of these vertices should be adjacent to a white vertex. By Lemma 0.3 there
is no white vertex adjacent to two vertices of v,, v,, v, but nonadjacent to v,.

Vo Vo Vo

O o - O
Fig. 2.1

If it is adjacent to v,, since % (G,) is connected, we get contradiction due to
Lemma 0.1. Let u;, u,, u, be the vertices adjacent to v,, v,, v, respectively.
Vertices u,, u,, u, cannot induce a triangle, since then G would have to many
cycles. Hence, say u; and u, are not adjacent and by Lemma 0.1 v, should
be adjacent to at least one of them. But then the degiee of v, would be grea-
ter than 3 and K,CL(G). Since K,7 G and since G, contains only one black
vertex, it follows that G, contains a triangle with white vertices which are not
adjacent to v,. Now G has too many cycles or we have a colouring forbidden
by Lemma 0.1. This completes the proof. :

Corollary 2.1. If G has two components one of which being an isolated
vertex, then:

1° if two cycles of G have at most one common vertex, then they are triangles;

2° if two cycles of G have common edges, then we can choose two cycles
in G such that they have exactly one edge in common and at least one of cycles
is a triangle.

Lemma 2.5. If G has two components one of them being an isolated
vertex and if G contains two triangles with at most one common vertex, then G
is the graph E, of Fig. 3.1.

Uy @)

Uy

Uz

" Fig. 2.2,
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Proof. Now G contains an induced subgraph shown on Fig. 2.2. Let
the isolated vertex be white. It can be pointed out by Lemma 0.1 that G,
does not contain any black vertex outside the subgraph of Fig. 2.2. Suppose
for d(u,, v))>=1 that a white vertex w is adjacent to one of the vertices u,,
Uy, Vo, v; say u, (to other vertices cannot be adjacent because of Lemma
2.4), By Lemma 0.1 all vertices of the subgiaph from Fig 2.2 are white
except for #, which must be black. However, now we have K, .% (G, and*
A*$(G)>4. Since d(u,, v,)>>1, that is not possible by Lemma 2.4. It remains
to check whether the graph of Fig. 2.2. is a solution for d(u,, v,)>1. By Lemma
0.5 and 0.6 it must have eight vertices, i.e., d(u;, v,)=2. Then by Lemma
0.2 all vertices must be white except perhaps for #;, and v,. Since one of them
must be black .7 (G,) will be disconnected. Let now d(u,, v,)=0. If there exists
a vertex w adjacent say, to u, then u,, v,, v, are white and u, (=v,) must be
black. Since K,C L (G), G, must contain a white triangle but that is impossible
having in view the the number of cycles of G. Hence, w does not exist. On
the other hand, the graph of Fig. 2.2. is a solution for d(u,, v,)=0. This
completes the proof.

Lemma 2.6. If G has two components one of which is an isolated vertex
and the other ome containing two cycles with a common edge, then G is one of
graphs Ey, E,, of Fig. 3.1.

bl
Fig. 2.3,

* A(G) denotes the maximal vertex degree in G.

4 Publications de I'institut mathématique
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Proof Let the isolated vertex be white. According to Corollary 2.1.
and Lemma 2.4, G has the form indicated in Fig. 2.3.7

1° If C,¢ G then, by Lemma 0.1 all vertices of G, must be white except
the case when [, =0 and the second cycle has a length 5. It can be easily seen
that in neither case G is a solution. For /,>>3 and C,<G, by repeatedly app-
lying Corollary 0.1 the same follows as above. Now for I;=1 or 2 we get two
graphs which are not solutions which can be seen by direct checking. For ;=0
and C,<G we get a solution.

2° If 1,, ,>>1 applying Lemmas 0.5 .and 0.6 we get that only possibili-
ties are (;, {1, 1), (1, 2), (2, 3)} i#j, i, j=2. 3. The possibility [,=1=1
is a contradiction by itself while for other two by using Lemma 0.1 and its co-
rollary we easily get that there are no solutions. If say, ;=0 then by applying
Corollary 0.1 for ,,>>3 we get that all vertices of a triangle containing vertex
v, are of the same colour, then v, and its neighbour on the hanging path are
of the same colour and all vertices of the path being at distance greater than
one from v, are also coloured by the same colour. Now G, is monochro-
matic or contradicts Lemmas 0.1 or 0.4 (see F; in Fig. 0.1). For [,=2 and
I,=0 we get a solution. For ,=1 and /,=0 the corresponding graphs are not
solutions.

This completes the proof.
Hence, there are only 4 disconnected exceptional solutions (see graphs

E,, E;, E,, E,, of Fig 3.1.
3. The main result

Summarizing the result from Sections 1 and 2 we have the following
theorem.

Theorem 3.1. The only graphs which are switching equivalent to their
line graphs are regular graphs of degree 2 and ten graphs shown in Fig. 3.1.

Fig. 3.1. a)

* [ .1,,1, denote the lengths of the corresponding paths.
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Fig 3.1. b)

For each graph in Fig. 3.1 a colouring is given which inverts G by
switching into L (G). In general such colourings are not unique.

The result can also be reformulated in the following way.

Theorem 3.2. “Generalized” graph equation L (G)~G has as solutions
regular graphs of degree 2 and graphs of Fig. 3.1.

Remark. All the solutions are line graphs.

Acknowledgement We are very thankful to F.C. Bussemaker who drew
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