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THE MAIN PART OF THE SPECTRUM, DIVISORS
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Abstract. The relationship between three apparently unrelated notions from the theory
of graph spectra, mentioned in the title, is discussed.

1. Introduction

1° Let g, ..., u, be the distinct eigenvalues of an (undirected) graph G.
It was noticed in [2] that for the number N, of walks of length &k in G
the formula

1) Ne=Cypi+ -« +Cpiim

holds, where C,, ..., C, are certain numbers (not depending on k). In the
same paper the main part of the spectrum was defined as the set of those
eigenvalues y, for which C;#0.

The way of finding the C;’s is given in [7]. (Similar calculations appear
also in the theory of Markov chains [8]). The adjacency matrix 4 of G is
symmetric and -so there exists a system of mutually orthogonal eigenvectors
#,, ..., 4, belonging to the eigenvalues A, ..., A, of 4. If these vectors are
normalized (so that their moduli are equal to 1), the matrix U=||u, ..., t,],
whose columns are the mentioned eigenvectors, satisfies the relation 4 =UAU 1,
where A is a diagonal matrix with 2A,, ..., %, on the diagonal. Since U is
orthogonal, we have 4*=UA*U”. The number of walks N, is, of course, equal
to the sum of all elements of 4A* and. a. straightforward computation gives

) Ne= 3 (Ut + -« - P25
i=1

where u; are coordinates of the vector u,.

Formula (2) is derived in [5] and applied to some chemical problems.
The formula was known to the author much earlier and was included in the
manuscript of the monograph [4]. It is independently discovered "also in [11],
where it was. used to find the number of dissimilar walks of length n.

By comparing (1) and (2) we see that an eigenvalue p, is a main eigen-
value if and only if it has an eigenvector in which the. sum of coordinates
is not zero, i.e. which is not orthogonal to the vector j, whose all .compo-
nents are equal to 1.
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Following this observation (see also [11]) we introduce a suitable termi-
nology.

Let 2y, ..., A, be the eigenvalues of G with A, =A,>.-->2,. Let
Aj=%q =N, ,=A for some j, p, A and let no other eigenvalue be equal
to JIf the elgenspace of A contains an eigenvector not orthogonal to j, then
we shall call A, a main eigenvalue and XA;,, ..., Ay, will be called non-main
eigenvalues. If all the eigenvectors of 7\ are orthogonal to j then all the
eigenvalues A;, A;,q, ..., Ajy, are non-main. If A,;=2 is a main eigenvalue we
can find an orthogonal basis u©®, u®, ..., 4@ of its eigenspace such that

uj#0 and u®j=0 for i=1, ..., p. Again, u® is a main eigenvector and
u®, ..., u® are non-main eigenvectors. If A is not a main eigenvalue, all its
eigenvectors are called non-main.

2° Given a square matrix B=| b;||{, let the vertex set X of a graph G
be partitioned into (non-empty) subsets X, X,, ..., X; so that for any
i,j=1,...,s each vertex from X, is adjacent to exactly b, i vertices of Xj.
Then the multldlagraph H with the adjacency matrix B 1s called a front
divisor of G [14], or briefly, a divisor of G.

The existence of a divisor means that the graph has a certain structure.
(The divisor can be interpreted as a homomorphic image of the graph). On
the other hand the characteristic polynomial of a divisor divides the charac-
teristic polynomial of the graph (i.e. the spectrum of divisor is contained in .
the spectrum of the graph) [13]. In this way the notion of a divisor can be
understood as a link between spectral and structural properties of a graph
[9]. The concept of divisor was also used in coding theory [6]. .

3° A partition of the vertex set of a graph G into two (disjoint) subsets
(one of which may be empty) will be represented as a colouring c¢ of vertices
by two colours (say black and white) such that the vertices from the same
subset are coloured by the same colour. The graph G together with its
colouring ¢ will be denoted by G,.

Switching a graph G with respect to a colouring ¢ (or partition ¢) means
deleting all edges between black and white vertices in G, and introducing a
new edge between a black and a white vertex whenever they were non-adja-
cent in G, [12]# The graph obtained after switching will be denoted by % (G,).
Graphs G and H are switching equivalent if H=_% (G,) for some colouring c.
Switching relation is an equivalence relation in the set of graphs and we can
speak about switching classes of graphs.

A remarkable fact about switching is that switching equivalent graphs have
the same Seidel spectrum (i.e. the spectrum of the Seidel adjacency matrix
S=|s;|]{ with s;=0 and (for i#j) s;=—1 if vertices i and j are adjacent
and s;;=1 otherwise).

2. The main part of the épectrum and the switching

Some relations between the spectrum of a graph and its complement were
found in [3]. Since the connection of the adjacency matrix of a graph and the adja-
cency matrix of its complement goes via the matrix J whose all entries are unity,
the same type of relations must exist between the spectrum and the Seidel
spectrum of a graph. (If 4 is the adjacency matrix of a graph and if S denotes
its Seidel matrix, we have S=J—24—1I).
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For the Seidel matrix (more generally, for any symmetric matrix) we
can again define main and non-main eigenvalues and eigenvectors by ortho-
gonality conditions with respect to the vector j. The matrix J has a main
eigenvector j belonging to the (main) eigenvalue n (dimension of J) and there
are n—1 non-main independent vectors belonging to the eigenvalue 0. There-
fore each non-main eigenvector of 4 is a non-main- eigenvector of S and the
converse also holds. If A is a non-main eigenvalue of 4, then —2A—1 is a
non-main eigenvalue of S and vice versa. Hence, the number of non-main
(and, of course, also the number of the main) eigenvalues is the same for 4
and S. The multiplicity of A in 4 and of —2A—1 in S need not be the
same, since a main eigenvector can exist for A in A and not for —2r—1
in S, or vice versa. Hence, we have proved the following lemma.

Lemma. Let G be a graph with the adjacency matrix A and the Seidel
matrix S. For any A\, the multiplicity of A in A and of —2x—1 in S differ by
at most 1.

Remark. In regular graphs all eigenvalues except for the greatest
one are non-main and therefore they are transformed by A——2A—1 when
going from 4 to S. To the greatest eigenvalue r of A there corresponds the
eigenvalue n—1—2r of § and it may coincide with some other eigenvalues.

Theorem 1. Let graphs G, and G, be switching equivalent. For any 1,
the multiplicity of \ in G, (as the eigenvalue of the adjacency matrix) and the
multiplicity of » in G, differ by at most 2.

Proof. Let A,, 4, and S|, S, be the adjacency and the Seidel matrices
of G,, G, respectively. Then S; and S, have the same spectrum. The multipli-
cities of the corresponding eigenvalues of 4, S| and of S,, 4, are related by
lemma and the theorem readily follows.

Remark. If we switch G, into G, then the Seidel spectrum is not
changed but the main part of the Seidel spectrum is changed in general. For
example, the graph 3K; has the spectrum 0, 0, 0 and the main part is {0}.
The Seidel spectrum is 2, —1, —1, the main part being {2}. If we switch 3K,
into K; , the main part of the Seidel spectrum becomes {2, —1} and when
going to the ordinary spectrum we get I/Z 0, ——lfi the main part being
{IF2, —l/f}. Hence, the multiplicity of 0 in 3K, has decreased by 2 after
switching. This example suggests that the change of multiplicity by 2 is con-
nected with a conversion of a non-main eigenvalue to a main eigenvalue or
vice versa. :

There is another aspect of the relation between the main part of the
spectrum and switching. We shall derive a formula connecting the characte-
ristic polynomial Pg(2) and the Seidel polynomial S (A).

Let N, be the number of walks of length & in a graph G and let

+ o0
Hg(#)= 3 Nit¥ be the generating function for the numbers of walks (¥, being
k=0
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equal to the number of vertices n of G). As shown in [2] we have
Ps (_ t+ 1) )
It ~1
Pl
G( t)

This formula can be useful in some combinatorial enumeration problems,
but it is important to notice [11] that this formula, when rewritten in the form

3) Hy (t)% (—1y

- z= (—— ] ) — A - : _——_1.—
4 -~ Pg(W)=(—1)"Pg(—2 1)(1 1+AHG( 1+k))’

gives the connection between the characteristic polynomials of the graph G .
and of its complement G.

Formula (4) can be easily derived using the following simple relation
(5 det(Y+tJ)=det Y +tsumadj Y,

where Y is any square matrix, ¢ is a number, sum X means the sum of all
entries of the matrix X and adj Y is the matrix of cofactors of elements of Y.

Applying (5) with Y=I—t4 and t=—1 we get
(6j sum adj (/—tA4) = —;— (det ((z+ 1) I +tA)—det (I— t)f)),
where A=J—I—A is the adjacency matrix of G. On the other hand
) Hg(t)= Jrf t*sum A" =sum +Zw Ak k= sum (I—tA4)~1=
k=0 k=0

— sum adj (I—t4)/det (I—tA).

Combining (6) and (7) we get (3).

Since S=J—24—I, putting Y=AI+24+1 and ¢t=—1 in (5) we get in
a similar way:

Theorem 2.

@®  pe= T sy —L
2” 1+_}_H (.}_)
5% T\

In this way again the function H plays the role of the link between the
characteristic polynomial Pg(») and the Seidel polynomial S;(A). It should
be noticed that P,;(2) depends on two functions Sg(A) and Hg(3). The first
one is the same for all graphs in a switching class and the second one is
changed under switching. Hence, it will be of some interest to investigate the
behaviour of Hg;(A) under switching.
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3. The main part of the spectrum and divisors

The function -I—HG (—1—) has only simple poles and they represent the
u u

main. part of the spectrum of G, since

S LA S P
u \u U K= “Nu U g—o u* ; it

m + o0 Nk m
-Lses (i) LI o
k=0 \ U

U =1 U i1 1___& i=1 U—;

Let n{) be the number of walks of length k¥ in a multidigraph H,
which starts from the vertex j. Then n® is the sum sum® B* of all entries of
the i-th row in B%, where B is the adjacency matrix of H. Consider the

. a1 i teo
function iH}} (—«), where HY () = > nP k. We have
u u k=0
1 @1)_1 S0 =30 U By O
(10) ”7HH 0 )T 2w T 2 e S B = sum kgou"_'
1 1\t S
=— sum® (I —— B) =sum® (ul—B)~ L

. Theorem 3. The spectrum of any divisor H of a graph G includes the
main part of the spectrum of G. :

Proof. Let H be formed on the basis of the partition X =X, UX,U - UX,

of the vertex set X of G. Let |X;|=n, (i=1, ..., 5). Let i be the vertex of H
corresponding to X;. H is a homomorphic image of G and the image of any
walk in G is a walk in H, where, of course, different walks in G can have
the same image in H. If a walk in H starts at vertex i then the correspon-
ding walks start in X,. If we fix a vertex in X; as the starting point of the
walk, then the walk in G is uniquely determined by the walk in H (which
starts at vertex i), since there exists a 1—1 correspondence between the edges
- starting at / and the edges starting at any fixed vertex from X,. In this way we
get Nk-——nlng)—}— SRR 3 ngf) and by (10) we have

1 1 s )

— Hyg (—)= > n;sum® (ul—B)~.

u u i=1

i

We sec that the function at the right hand side is rational with the
characteristic polynomial Py (u) of H in denominator. (Some factors of Py (x)

may be cancelled). Since by (9) the (simple) poles of iHG (i) form the main
S u u/ ~

part of the spectrum of G, all these main eigenvalues must be zeros of Py (u).
This completes the proof. S

3*
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Corollary. The greatest eigenvalue 1 of a graph always belongs to
the main part of the spectrum. Hence, any divisor of a graph G contains the
eigenvalue r.

' It was conjectured in [11] that the spectrum of a divisor H with the
smallest number of vertices is just the main part of the spectrum of G.
Theorem 3 confirms one part of this conjecture. The remaining part is not true
because of the following counterexample.

G 2.

Fig.- 1

According to Theorem 9.3 of [10], graphs G, and G, of Fig. 1 are
cospectral and have cospectral complements. According to (3), G, and G, have
the same main part of the spectrum. (Notice that cospectral graphs need not
have the same main part of the spectrum). Because of the symmetry G, has a
divisor on 10 vertices. By Theorem 3 the main part of the spectrum of G,
and ‘G, has at most 10 eigenvalues. But the divisor of G, with a minimal
number of vertices has 19 vertices. So G, is a counterexample to the above
conjecture. - .

"~ Remark. It can easily be seen that the graphs with only one eigen-
value in the main part of the spectrum are just the regular graphs. It will be
interesting to know which graphs have exactly k eigenvalues in the main part
of the spectrum for any k. In particular, semiregular bipartite graphs have
exactly two eigenvalues in the main part of the spectrum. Are there other
graphs with this property? Note that the eigenvalue —2 in line graphs is
never a main eigenvalue.

4. Divisors and switching of graphs

Theorem 4. If a regular graph G of degree r with n vertices can be

switched into a regular graph of degree r*, then r*——n{ is an eigenvalue of G.
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Proof. If G has the mentioned property then the switching “sets form
a divisor with the adjacency matrix

1 1
r——(n—x—r*+r —(n—x—r*4r
5 ( ) 5 ( )

1 1
el C T S F——{(x—r¥+r
5 ( ) 5 ( )

where x is the size of a switching set (1<{x<(m). This matrix has the e1gen-

n
values r and r*—?, which proves the theorem.

Corollary. 1. If n is odd then G cannot be switched into a regular
graph since an eigenvalue of a graph cannot be a non-integer rational number.

Corollary 2. If G can be switched into a regular graph of’ the same
degree and if q is the least eigenvalue of G, then r—%>q, i.e.n<<2r—2q.

R n .
Since q= —r, we get r—~2—>——r, i.e. r=nf4.

Example 1. There is no cospectral pair of non-isomorphic cubic
graphs with less than 14 vertices [1]. Therefore the existence of such pairs
cannot be explained by switching.

"Example 2. Under which condition the graph L (K,) cannot be

switched into another regular graph of the same degree? We have n=< ; ) ,

r=25—4 and g=—2. Hence r——;l—<—2, 25— <-—2, i.e. §>8.

4_3(‘9_—1_)

2
As known, for s=8 there are three graphs cospectral, switching equivalent
and not isomorphic to L (Kj).
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