ONE SUFFICIENT CONDITION FOR THE UNIT MULTIPLICITY OF A STOCHASTIC PROCESS

Jelena Bulatović

(Communicated May 10, 1977)

Preliminary notions and definitions

Let $X = \{X(t), 0 \le t \le 1\}$ be an arbitrary stochastic process of the second order (see [1]). Denote by H(X;t) (H(X;t-0)) the smallest Hilbert space spanned by X(s), $s \le t (s < t)$, and suppose that H(X;t-0) = H(X;t), $0 \le t \le 1$; put H(X) = H(X;t), and suppose that the space H(X) is separable.

The projection-operator from H(X) onto H(X;t) denote by $E_X(t)$; it is easy to see that $E_X = \{E_X(t), 0 \le t \le 1\}$ represents the resolution of the identity of the space H(X). It is known, [1], that there exists the so-called Hida-Cramér representation of X:

$$X(t) = \sum_{n=1}^{N} \int_{0}^{t} g_{n}(t, u) dZ_{n}(u), \ 0 \leqslant t \leqslant 1,$$

$$Z_n(u) = E_X(u) z_n$$
, $z_n \in H(X)$, $0 \le u \le 1$; $n = 1, ..., N$.

The number N, which may be a positive integer or equal to infinity, we call the *multiplicity of* X.

Any element $x \in H(X)$ determines the measure m_x , which is induced by the function $F_X(t) = ||E_X(t)x||^2$, $0 \le t \le 1$. Let us put $M_X = \{m_x, x \in H(X)\}$. We introduce a partial ordering in M_X by saying that m_X is subordinated to m_y , and writing $m_x < m_y$, whenever m_x is absolutely continuous with respect to m_y . If m_x and m_y are mutually absolutely continuous, we say that they are equivalent, and we write $m_x \sim m_y$. The spectral type μ_x is equal to the set of all elements $m \in M_X$ which are equivalent to m_x ; in the set M_X/\sim a partial ordering is introduced in the obvious way: we say that μ_x is subordinated (equal) to μ_y , and we write $\mu_x < \mu_y$ ($\mu_x = \mu_y$), if the corresponding relation holds for each $m \in \mu_x$ and each $n \in \mu_y$. For arbitrary μ_x , μ_y , by inf $\{\mu_x, \mu_y\}$ (sup $\{\mu_x, \mu_y\}$) we denote the greatest spectral type which is subordinated to μ_x and μ_y (the smallest spectral type to which μ_x and μ_y are subordinated). It can be shown that, under our conditions, infimum and supremum of arbitrary many spectral types exist.

Each process Z_n , $n=1,\ldots,N$, from (1) determines the measure m_{z_n} and the spectral type μ_{z_n} . Note that the inequalities $\mu_{z_1} > \cdots > \mu_{z_N}$ hold, [1]; the sequence $\mu_{z_1},\ldots,\mu_{z_N}$ we call the spectral type of the process X.

If x is arbitrary element from H(X), then the smallest Hilbert space \mathfrak{M}_x , spanned by the variables $E_X(t)x$, $0 \le t \le 1$, we call the cyclic space generated by x: $\mathfrak{M}_x = \overline{\mathcal{F}}\{E_X(t)x, \ 0 \le t \le 1\}$; the spectral type of \mathfrak{M}_x is equal to μ_x . The cyclic spaces, with mutually orthogonal spectral types, are mutually orthogonal. For any $\mu < \mu_x$, there is an element $y \in \mathfrak{M}_x$ such that $\mu_y = \mu$, [2].

The multiplicity of the spectral type μ_x , which we denote by mult μ_x , is equal to the cardinal number of the maximal set of mutually orthogonal cyclic spaces, whose spectral types are equal to μ_x (see [2]).

Results

Let t_0 be arbitrary but fixed value of t. The spectral type generated by X(t), $0 \le t \le 1$, we shall denote by μ_t . Put

$$\sigma_t = \inf \{ \mu_t, \ \mu_{t_0} \},$$

and

$$\mathfrak{M}_t = \overline{\mathcal{L}}\{E_X(s) X(t), \ 0 \leqslant s \leqslant 1\};$$

the space \mathfrak{M}_t is cyclic and its spectral type is μ_t . There exists a cyclic space \mathfrak{N}_t , $\mathfrak{N}_t \subset \mathfrak{M}_t$, such that σ_t is its spectral type; such space \mathfrak{N}_t is uniquely determined by σ_t , [2]. It is easy to show that the projection of \mathfrak{N}_t onto \mathfrak{M}_{t_0} is the cyclic space; from that it follows that the space $\mathfrak{N}_t \ominus P_{\mathfrak{m}_{t_0}} \mathfrak{N}_t$ is also cyclic. There is an element $n_t \ominus \mathfrak{N}_t$ such that $\mathfrak{M}_{n_t} = \mathfrak{N}_t \ominus P_{\mathfrak{m}_{t_0}} \mathfrak{N}_t$. The family of all such elements n_t denote by $M_{t_0} : M_{t_0} = \{n_t, 0 \le t \le 1\}$.

Theorem 1. For arbitrary t_0 , if

$$\sup_{n_t\in M_{t_0}}\{\mu_{n_t}\}_{\neq}^{<}\mu_{t_0},$$

then mult $\mu_{t_0} = 1$.

Proof. Le us suppose that the theorem does not hold, namely that

(2) mult
$$\mu_{t_0} > 1$$
.

We shall show that this is impossible. From (2) it follows that there exist at least two mutually orthogonal cyclic spaces whose spectral types are equal to μ_{t_0} ; one of these cyclic spaces, orthogonal to \mathfrak{M}_{t_0} , denote by ${}_{1}\mathfrak{M}_{t_0}$. If n_t is orthogonal to ${}_{1}\mathfrak{M}_{t_0}$ for each $n_t \in M_{t_0}$, then X(t) is orthogonal to ${}_{1}\mathfrak{M}_{t_0}$ for each t, or, equivalently, H(X) is orthogonal to ${}_{1}\mathfrak{M}_{t_0}$, which is impossible. So, there exists an element $n_t \in M_{t_0}$ such that $P_{1}\mathfrak{M}_{t_0}$ $n_{t_1} = {}_{1}n_{t_1} \neq 0$.

The space H(X) can be written in the form

(3)
$$H(X) = {}_{1}\mathfrak{M}_{t_0} \oplus [H(X) \ominus_{1}\mathfrak{M}_{t_0}];$$

since $_{1}n_{t_{1}}$ generates the cyclic space $_{1}\mathfrak{M}_{t_{1}}$ of the spectral type $\mu_{1}n_{t_{1}}<\mu_{n_{t_{1}}}$ from (3) we obtain

$$H(X) = {}_{1}\mathfrak{M}\iota_{1} \oplus [{}_{1}\mathfrak{M}\iota_{0} \ominus {}_{1}\mathfrak{M}\iota_{1}] \oplus [H(X) \ominus {}_{1}\mathfrak{M}\iota_{0}].$$

If we apply infinitely this reasoning we obtain

(4)
$$H(X) = \sum_{i=1}^{\infty} \bigoplus_{i} \mathfrak{M}_{t_{i}} \bigoplus \left[{}_{1}\mathfrak{M}_{t_{0}} \ominus \sum_{i=1}^{\infty} \bigoplus_{i} \mathfrak{M}_{t_{i}} \right] \bigoplus [H(X) \ominus_{1} \mathfrak{M}_{t_{0}}].$$

It is easy to see that there is a sequence t_1, t_2, \ldots such that

$${}_{1}\mathfrak{M}t_{0}=\sum_{i=1}^{\infty}\bigoplus_{i}\mathfrak{M}t_{i};$$

namely, if it is not valid, then, for each sequence t_1, t_2, \ldots , the cyclic space ${}_{1}\mathfrak{B}_{t_0} \ominus \sum_{i=1}^{\infty} \oplus {}_{i}\mathfrak{M}_{t_i}$ is orthogonal to H(X), which is impossible. So, by reason of (5), the equality (4) becomes

$$H(X) = \sum_{i=1}^{\infty} \bigoplus_{i} \mathfrak{M}\iota_{i} \bigoplus [H(X) \bigoplus_{1} \mathfrak{M}\iota_{0}],$$

where the cyclic space ${}_{1}\mathfrak{M}_{t_{i}}$, $i=1,2,\ldots$, is generated by ${}_{i}n_{t_{i}}$, and $\mu_{i}n_{t_{i}} < \mu_{n_{t_{i}}}$. From the mutual orthogonality of cyclic spaces ${}_{i}\mathfrak{M}_{t_{i}}$, $i=1,2,\ldots$, and from (5) it follows, [2],

(6)
$$\sup \{\mu_{1}^{n_{t_1}}, \mu_{2}^{n_{t_2}}, \ldots\} = \mu_{t_0}.$$

Since $\mu_{i}^{n_{t_i}} < \mu_{n_{t_i}}$, i = 1, 2, ..., and $n_{t_i} \in M_{t_0}$ for each i, we have

$$\sup \{\mu_{1}^{n_{t_{1}}}, \mu_{2}^{n_{t_{2}}}, \ldots\} < \sup \{\mu_{n_{t_{1}}}, \mu_{n_{t_{2}}}, \ldots\} < \sup_{n_{t} \in M_{t_{0}}} \{\mu_{n_{t}}\};$$

hence, by reason of (6),

$$\sup_{n_t \in M_{t_0}} \{\mu_{n_t}\} > \mu_{t_0},$$

which contradicts the assumption of the theorem. Q.E.D.

Theorem 2. If mult $\mu_t = 1$ for each t, then N = 1.

Proof. Let us suppose that the theorem does not hold, i.e., that N>1. For uniqueness put N=2. From this assumption it follows that the process X can be represented in the form

$$X(t) = \int_{0}^{t} g_{1}(t, u) dZ_{1}(u) + \int_{0}^{t} g_{2}(t, u) dZ_{2}(u) =$$

$$= X_{1}(t) + X_{2}(t), \qquad 0 \le t \le 1,$$

where the processes X_1 and X_2 are mutually orthogonal and their multiplicities are equal to one. The process Z_i , i=1, 2, determines the spectral type μ_{z_i} , and $\mu_{z_1} > \mu_{z_2}$.

The spectral type μ_t is generated by the function $F_t(s) = ||E_X(s)X(t)||^2$, $0 \le s \le 1$, which can be written in the form

$$F_t(s) = ||E_X(s)X_1(t)||^2 + ||E_X(s)X_2(t)||^2 =$$

$$= F_t^{(1)}(s) + F_t^{(2)}(s), \quad 0 \le s \le 1;$$

hence

(7)
$$\mu_t = \sup \{ \mu_{1t}, \ \mu_{2t} \},$$

where the spectral type μ_{it} , i=1, 2, is generated by $F_t^{(i)}(s)$. If we show that there is a t, such that

$$\mu_{1t} < \mu_{z_2},$$

then, by reason of (7), it will imply $\mu_t < \mu_{z_2}$, But, the last relationship is equivalent to mult $\mu_t = 2$, [2], which contradicts the assumption of the theorem, or, equivalently, which means that our theorem holds.

So, we must show that there is a t, such that the relationship (8) is valid. We shall show more that than; precisely, we shall show the following: If $X_1 = \{X_1(t), 0 \le t \le 1\}$ is arbitrary stochastic process of the unit multiplicity and the spectral type μ_{z_1} , then for any spectral type $\mu < \mu_{z_1}$ there is a t, such that $\mu_{1t} < \mu$ (here we denote $\mu_{1t} = \mu_{X_1(t)}$).

Let Z_1 be a process from the Hida-Cramér representation of X_1 ; the equality $H(Z_1; t) = \mathfrak{M}_{Z_1(t)}$ is satisfied for each t. It is clear that

(9)
$$\mu_{Z_1(t_1)} < \mu_{Z_1(t_2)}, \ t_1 \leqslant t_2,$$

and that, when $t\to 0$, spectral type $\mu_{Z_1(t)}$ converges to the spectral type which is identically equal to zero. From this it follows the existence of a t_0 , such that $\mu_{Z_1(t_0)} < \mu$. But, the evident equality $H(X_1; t) = \mathfrak{M}_{Z_1(t)}$, $0 \le t \le 1$, implies that $\mu_{1,t} < \mu$ for each $t \le t_0$, which we wanted to prove. If we put $\mu = \mu_{Z_2}$, in the last relationship, we shall obtain (8).

REFERENCES

[1]. Cramér, H, Structural and Statistical Problems for a Class of Stochastic Processes, Princeton University Press, Princeton, New Jersey, 1961.

[2]. Plesner, A. I., Spectral Theory of Linear Operators (in Russian), Nauka, Moskow, 1965.