SOME THEOREMS FOR MODEL THEORY OF MIXED-VALUED PREDICATE CALCULI

Gradimir Vojvodić

(Communicated March 10, 1977)

We will consider k-models for mixed-valued predicate calculi. In the paper is given correspondence between k-models for mixed-valued predicate calculi and models for classical predicate calculi. The following theorems are proved: Loš' Theorem for k-models, Compacteness Theorem for k-models and Morley's Theorem for k-models. (As in [3], [2]).

Main characteristics of mixed-valued predicate calculi, which was introduced by H. Rasiowa in [4], is: for each predicate ρ there is $n_{\rho} \ge 2$, such that ρ is n_{ρ} -valued.

We assume that the reader is familiar with papers [1] — [6]. Terminology and notations are the same as in [4].

A realization R in $U \neq \emptyset$ is said to be a k-model of a formula $\alpha \in F$, (ord $(\alpha) \leq m$, $m \geq 2$), if $\alpha_R(v) \geq e_k$ for each $v \in W_U$ and $0 < k < \omega$. A realization R is a k-model of a set $F_1 \subset F$, if it is a k-model of each formula α in F_1 . A formula α is a k-consequence of a set $F_1 \subset F$, if each k-model of F_1 is a k-model of α . This will be written as $F_1 \mid \underline{k} \mid \alpha$.

Let F° be the least set of formulas in F satisfying the following condition:

- 1. e_0 , $e_{\omega} \in F^{\circ}$;
- 2. $D_i(\rho^m(\tau_1,\ldots,\tau_n))\in F^\circ$ for each $\tau_1,\ldots,\tau_n\in T$ and $\rho^m\in\Pi_m^m$, for $0< i<\omega,\ n>0,\ m\geqslant 2;$
- 3. $D_i(p^m) \in F^{\circ}$ for each $p^m \in V_0^m$, $0 < i < \omega$, $m \ge 2$;
- 4. if α , $\beta \in F^{\circ}$, then $\alpha \cup \beta$, $\alpha \cap \beta$, $\alpha \Rightarrow \beta$, $\neg \alpha$ are in F° ;
- 5. if $\alpha(x) \in F^{\circ}$ and a bound individual variable ξ does not occur in $\alpha(x)$, then $\exists \xi \alpha(\xi) \in F^{\circ}$ and $\forall \xi \alpha(\xi) \in F^{\circ}$. The formulas in F° will be said to be Boolean.

Theorem 1. For every formula α in F° , every realization R and valuation v, $\alpha_R(v) = e_0$ or $\alpha_R(v) = e_{\omega}$.

Proof: This follows from example in [4, p. 217].

Theorem 2. For every formula α in F° , $0 < i < \omega$, every realization R and valuation v, $(D_i(\alpha))_R(v) = \alpha_R(v)$.

Proof. This follows from T. 1 and (p_6) in [4].

Now let us define simultaneously, by induction on the length of a formula in F mappings $f_i: F \to F^\circ$, $0 < i < \omega$, as follows:

- (I) $f_i(e_j) = e_{\omega}$ for $i \leq j$, $0 < i < \omega$, $0 \leq j \leq \omega$, $f_i(e_j) = e_0$ for i > j, $0 < i < \omega$, $0 \leq j \leq \omega$
- (II) $f_i(\rho^m(\tau_1,\ldots,\tau_n)) = D_i(\rho^m(\tau_1,\ldots,\tau_n))$ for each τ_1,\ldots,τ_n and $\rho^m \in \Pi_n^m$, $m \ge 2$, $0 < i < \omega$;
- (III) $f_i(p^m) = D_i(p^m)$ for each $p^m \in V_0^m$, $m \ge 2$, $0 < i < \omega$;
- (IV) $f_i(\alpha \cup \beta) = (f_i(\alpha) \cup f_i(\beta)), 0 < i < \omega;$
- (V) $f_i(\alpha \cap \beta) = (f_i(\alpha) \cap f_i(\beta)), 0 < i < \omega;$
- (VI) $f_i(\alpha \Rightarrow \beta) = (f_1(\alpha) \Rightarrow f_1(\beta) \cap \ldots \cap (f_i(\alpha) \Rightarrow f_i(\beta)), 0 < i < \omega;$
- (VII) $f_i(\alpha) = f_i(\alpha), 0 < i < \omega;$
- (VIII) $f_i(D_i(\alpha)) = f_i(\alpha), 0 < i, j < \omega;$
- (IX) $f_i(\forall \xi \alpha(\xi)) = \forall \xi f_i(\alpha(\xi)), 0 < i < \omega;$
- (X) $f_i(\exists \xi \alpha(\xi)) = \exists \xi f_i(\alpha(\xi)), 0 < i < \omega.$

It is easy to see that $f_i(\alpha), 0 < i < \omega$, is a closed formula iff α is closed.

Theorem 3. For every formula α in F and every $0 < i < \omega$, $(D_i(\alpha))_R(\nu) = (f_i(\alpha))_R(\nu)$ by any realization R and valuation ν .

Proof. The proof is based on (p_0) — (p_6) , T. 1.7. and T. 1.9. in [4].

With the language \mathcal{L} we shall associate a formalized language \mathcal{K} of classical predicate calculus. Assume that \mathcal{K} has the same sets of free and bound individual variables and functors as \mathcal{L} and with every *n*-argument predicate $\rho^m \in \Pi_n^m$, $m \ge 2$ in \mathcal{L} , n=1, $2,\ldots$, there are in \mathcal{K} m-1 predicates $\rho^{m,i}$, $i=1,\ldots,m-1$ of n argument each, and no others; and that with every $p^m \in V_0^m$, $m \ge 2$ in \mathcal{L} , there are in \mathcal{K} 0 < i < m propositional variables $p^{m,i}$, and no others. Moreover, there occur in \mathcal{K} the connectives \cup , \cap , \Rightarrow , \neg , the propositional constant e_0 , e_ω , the quantifiers \forall , \vdash and parentheses. Let \vdash be the set of all formulas in \mathcal{K} . Let $f: F^o \to \vdash$ be the mapping defined thus:

- (AI) $f(e_0) = e_0, f(e_\omega) = e_\omega;$
- (AII) $f(D_i(\rho^m(\tau_1, \ldots, \tau_n)) = \rho^{m, i}(\tau_1, \ldots, \tau_n)$ for 0 < i < m; and for $j \ge m$ $f(D_j(\rho^m(\tau_1, \ldots, \tau_n)) = \rho^{m, m-1}(\tau_1, \ldots, \tau_n)$, for every $\rho^m \in \Pi_n^m$, $\tau_1, \ldots, \tau_n \in T$, and $m \ge 2$;

(AIII)
$$f(D_i(p^m)) = p^{m,i}$$
 for $0 < i < m$; and for $j \ge m$ $f(D_j(p^m)) = p^{m,m-1}$, for every $p^m \in V_0^m$;

(AIV)
$$f(\alpha \cup \beta) = (f(\alpha) \cup f(\beta));$$

(AV)
$$f(\alpha \cap \beta) = (f(\alpha) \cap f(\beta));$$

(AVI)
$$f(\alpha \Rightarrow \beta) = (f(\alpha) \Rightarrow f(\beta));$$

(AVII)
$$f(\neg \alpha) = \neg f(\alpha)$$
;

(AVIII)
$$f(\forall \xi \alpha(\xi)) = \forall \xi f(\alpha(\xi));$$

(AIX)
$$f(\exists \xi \alpha(\xi) = \exists \xi f(\alpha(\xi)).$$

Let $\mathcal{S} = (\mathcal{K}, C_{\mathcal{K}})$ be a system of the classical predicate calculus with the formalized language \mathcal{K} and consider the elementary theory $\mathcal{S}(\mathcal{A}) = (\mathcal{K}, C_{\mathcal{K}}, \mathcal{A})$, where \mathcal{A} is the set of formulas in \overline{F} defined thus: for every *n*-argument $(n \ge 1)$ predicate $\rho^m \in \Pi_n^m$, $m \ge 2$ in \mathcal{L} , let \mathcal{A}_{ρ}^m be the conjunction of the following formulas:

(1)
$$\forall \xi_1, \ldots, \forall \xi_n (\rho^{m,i}(\xi_1, \ldots, \xi_n)) \Rightarrow \rho^{m,i-1}(\xi_1, \ldots, \xi_n)), \text{ for } 2 \leqslant i \leqslant m-1.$$

Let \mathcal{B}_p m be the conjuction of the following formulas, for every $p^m \in V_0^m$

(2)
$$(p^{m,i} \Rightarrow p^{m,i-1}), \text{ for } 2 \leqslant i \leqslant m-1.$$

Then \mathcal{A} is the set of all formulas $\mathcal{A} \rho^m$, $\mathcal{B} p^m$, for $\rho^m \in \Pi_n^m$, $p^m \in V_0^m$ and $m \ge 2$.

Every realization R of \mathcal{L} in $U \neq \emptyset$ assigns the following realization R_0 of \mathcal{K} in U: for every functor φ , $\varphi_{R_0} = \varphi_R$; for every n-argument $(n \ge 1)$ predicate $\rho^{m,i}$, $m \ge 2$ and every valuation ν :

(3)
$$\rho_{R_0}^{m,i}(\tau_1,\ldots,\tau_n)(v) = D_i(\rho_R^m(\tau_1,\ldots,\tau_n))(v) \text{ for } 0 < i < m,$$

(4)
$$\rho_{R_0}^{m, m-1}(\tau_1, \ldots, \tau_n)(v) = D_j(\rho_R^m(\tau_1, \ldots, \tau_n))(v) \text{ for } j \geqslant m;$$

and for every propositional variables $p^{m, i}$, $m \ge 2$:

(5)
$$p_{R_0}^{m,i}(v) = D_i(p_R^m(v)) \text{ for } 0 < i < m, \text{ and}$$

(6)
$$p_{R_0}^{m, m-1}(v) = D_i(p_R^m(v)) \text{ for } j \ge m.$$

Theorem 4. For every realization R of $\mathcal L$ in $U\neq\varnothing$ the realization R_0 of $\mathcal K$ is a model (Boolean) of $\mathcal I$ (A) and the following equation is satisfied for each formula α in F° and each valuation $v\colon \alpha_R(v)=(f\alpha)_{R_0}(v)$.

Proof. The first statement follows from (3) — (6) and the fact that $D_{i+1}(a) \leq D_i(a)$ for each element a in \mathcal{P}_{ω} , and T. 1.1, T. 1.7 in [4]. The proof of the second statement is by inductive argument on the length of a formula and refers to the definition of the mapping f and to equations which hold in \mathcal{P}_{ω} (see [4]).

Theorem 5. If R_0 is a model (Boolean) of $\mathcal{I}(A)$ in $U \neq \emptyset$, then, the equations $\varphi_R = \varphi_{R_0}$, for every functor $\varphi \in \Phi$,

$$\rho_{R}^{m}(\tau_{1}, \ldots, \tau_{n})(v) = (\rho_{R_{0}}^{m, 1}(\tau_{1}, \ldots, \tau_{n})(v) \cap e_{1}) \cup \cdots \cup (\rho_{R_{0}}^{m, m-2}(\tau_{1}, \ldots, \tau_{n})(v) \cap e_{m-2})$$

$$\cup \rho_{R_{0}}^{m, m-1}(\tau_{1}, \ldots, \tau_{n})(v)$$

and

$$p_{R}^{m}(v) = (p_{R_{0}}^{m,1}(v) \cap e_{1}) \cup \cdots \cup (p_{R_{0}}^{m,m-2}(v) \cap e_{m-2}) \cup p_{R_{0}}^{m,m-1}(v)$$

define a realization R of $\mathcal L$ in U such that for every valuation v:

$$D_i(\rho_R^m(\tau_1, \ldots, \tau_n)(v) = \rho_{R_0}^{m,i}(\tau_1, \ldots, \tau_n)(v) \text{ for } 0 < i < m, m \ge 2, \text{ and}$$

$$D_j\left(\rho_R^m\left(\tau_1,\ldots,\tau_n\right)(v)=\rho_{R_0}^{m,m-1}\left(\tau_1,\ldots,\tau_n\right)(v)\right)$$
 for $j\geqslant m,\ m\geqslant 2$, and

$$D_i(p_R^m(v)) = p_{R_0}^{m,i}(v)$$
 for $0 < i < m, m \ge 2$, and

$$D_{j}(p_{R}^{m}(v)) = p_{R_{0}}^{m, m-1}(v) \text{ for } j \ge m, m \ge 2.$$

Moreover, for every formula α in F° and every valuation ν the equation $\alpha_R(\nu) = (f \alpha)_{R_0}(\nu)$ holds.

Proof. The proof refers to (1), (2) and to (fr)-condition in [4]. The second part follows from the first and T. 4..

Theorem 6. For any formula α in F, and for each valuation v: R is a k-model of a formula α iff R_0 is a model (Boolean) for ff_k (α) , i.e.

$$(\alpha)_R(v) \geqslant e_k \text{ iff } (ff_k \alpha) R_0(v) = e_{\omega},$$

if the realizations R and R_0 are defined as in T.5 and T.6.

Proof. The proof refers to T.3, T.4 and T.4.1. in [4].

Theorem 7. (Loš' Theorem on reduced product for k-models) If ∇ is a prime filter on $N \neq \emptyset$, for any formula α in F and for each valuation v:

$$\{n \in \mathbb{N}: \alpha_{R_n}(\mathbf{v}^n) \geqslant e_k\} \in \nabla \ iff \ (\alpha)_{\Pi R_n/\nabla}(\mathbf{v}) \geqslant e_k,$$

where $\Pi R_{n/\nabla}$ is a sign for reduced product of the family realization $\{R_n: n \in N\}$ of \mathcal{L} over the prime filter ∇ on N [see [4]].

Proof. $\{n \in N : \alpha_{R_n}(v^n) \geqslant e_k\} \in V$ iff $\{n \in N : ff_k \alpha(R_n)_0(v^n) = e_\omega\} \in V$, by T.6., iff $(ff_k \alpha)_{\prod R_{no}/V}(v) = e_\omega$, by Loš' theorem for classical predicate calculus [1], iff $(\alpha)_{\prod R_{n/V}}(v) \geqslant e_k$, by T.6.

Theorem 8. (Compactness Theorem for k-models) $F_1 \stackrel{k}{=} \alpha$ iff there is a finite subset F_1' of F_1 such that $F_1' \stackrel{k}{=} \alpha$.

Proof. $F_1 \models \alpha$ iff $\mathcal{A} \cup \{ff_k \beta : \beta \in F_1\} \models ff_k \alpha$ by T.4, T.5. and T.6., iff $\mathcal{A} \cup \{ff_k \beta : \beta \in F_1' \subset F_1 \text{ and } F_1' \text{ is a finite}\} \models ff_k \alpha$, by the compactness theorem of the classical predicate calculus (see [1]), iff $F_1' \models \alpha$, by T.4., T.5. and T.6..

Now let R and R' be any two realizations of \mathcal{L} with universes U and U', reprectively. If $g: U \to U'$ is any mapping and $v: V \cup V^{\circ} \to U \cup P_{\omega}$ is a valuation, then gv denotes the valuation, defined by gv(x) = g(v(x)) for every $x \in V$, i.e. $gv: V \cup V^{\circ} \to U' \cup P_{\omega}$. Let be $g: U \to U'$ a bijection. Two realizations R and R' of \mathcal{L} are said to be isomorphic if for every valuation $v: V \cup V^{\circ} \to U \cup P_{\omega}$, every $i \leq \omega$, every $\varphi \in \Phi$, every $\varphi^m \in \Pi_n^m$, every $p^m \in V_0^m$, and $m \geq 2$

$$(\varphi(x_1, ..., x_n) = x_0)_R(v) = e_\omega \text{ iff } (\varphi(x_1, ..., x_n) = x_0)_{R'}(gv) = e_\omega,$$

$$\rho^m(x_1, ..., x_n)_R(v) = e_i \text{ iff } \rho^m(x_1, ..., x_n)_R(gv) = e_i,$$

$$p_R^m(v) \in P_m \text{ iff } p_{R'}^m(gv) \in P_m.$$

Theorem 9. Let R and R' be any two realizations of $\mathcal L$ and let R_0 and R'_0 be defined as in T.4. Then R and R' are isomorphic iff R_0 and R'_0 are isomorphic.

Let s be an arbitrary infinite cardinal. Let F' be a subset of F. F' is said to be (s, k)-categorical if each two k-models of F' with universes of power s are isomorphic. Categoricity for sets of sentences is usually defined, [1].

Theorem 10. (Morley's Theorem) F' is (s, k)-categorical for some infinite cardinal s iff F' is (s, k)-categorical for every infinite cardinal s.

Proof. F' is (s, k)-categorical for some infinite cardinal s iff ff_k F' is s-categorical for some infinite cardinal s by T.9., T.5, and T.6, iff ff_k F' is s-categorical for every infinite cardinal s, by Morley's Theorem of the classical predicate calculus (see [1]) iff F' is (s, k)-categorical for every infinite cardinal s, by T.9., T.5. and T.6.

Remark. Let \mathcal{A} be a theory for mixed valued predicate calculi. Let R be k-model for \mathcal{A} . Then T.5 and T.4 implies that theory \mathcal{A} is not preserved under homomorphisms. (see [6], T.3.2.4).

REFERENCES

- (1) J. Bell and A. Slomson, Models and Ultraproducts, (North Holland) Amsterdam. 1971, IX, +322 pp.
- (2) B. Dahn, Meta-Mathematics of some Many-valued Calculi, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., vol. 22 (1974), pp 747—750.
- (3) H. Rasiowa, The Craig interpolation theorem for m-valued predicate calculi, ibid. vol. 20 (1972), pp. 341—346.
- (4) H. Rasiowa, Mixed-valued Predicate Calculi, Studia Logica, 34, 1975, pp. 216-234.
- (5) Z. Saloni, Gentzen rules for m-valued logic, Bull. Acad. Polon. Sci., Sér, Sci. Math. Astronom. Phys., vol 20 (1972) pp. 819—824.
- (6) C. C. Chang and H. J. Keisler: Model theory, North Holland, Amsterdam, 1973.

Institut za matematiku, PMF, 21000 Novi Sad, Yugoslavija