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We will consider k-models for mixed-valued predicate calculi. In the
paper is given correspondence between k-models for mixed-valued predicate
calculi and models for classical predicate calculi. The following theorems are
proved: Lo¥ Theorem for k-models, Compacteness Theorem for k-models and
Morley’s Theorem for k-models. (As in [3], [2]).

Main characteristics of mixed-valued predicate calculi, which was intro-
duced by H. Rasiowa in [4], is: for each predicate p there is 7,>2, such

that p is n,-valued.
We assume that the reader is familiar with papers [1] — [6]. Termi-

nology and notations are the same as in [4].

A realization R in U#£ g is said to be a k-model of a formula o«&F,
(ord (0)<m, m>2), if az(v)>>e, for each vEW, and 0 <k<w. A realization
R is a k-model of a set F,CF, if it is a k-model of each formula « in F,.
A formula « is a k-consequence of a set F,(CF, if each k-model of F, is a
k-model of «. This will be written as F, | X a.

Let F° be the least set of formulas in F satisfying the following con-
dition:

1. e, e,=F;

2. D;(e™ (3,5 ... » T))EF® for each t,..., 7,&T and p"EIl,, for

O<i<w, >0, m>2;
3. D,(p™) & F° for each p"CVy, 0<i<w, m>=2;
4. if a, BEF°, then aUB, «NP, a=>B, T« are in F

5. if «(x)©F° and a bound individual variable £ does not occur in
a(x), then IEx ()CF° and VEx(§)&F°. The formulas in F° will
be said to be Boolean.

Theorem 1. For every formula o in F°, every realization R and valuation
v, ag(V)=e, or ay(v)=e,.
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Proof: This follows from example in [4, p. 217].

Theorem 2. For every formula o in F°, 0<i<w, every realization R and
valuation v, (D;(a))g (V) =az ().

Proof. This follows from T. 1 and (pg) in [4].

Now let us define simultaneously, by induction on the length of a formula
in F mappings f;: F—F°, 0<i<w, as follows:

@ filep=e, for i<j, O<i<o, 0 i<, file)=e, for i>j, O<i<w,
0<j<o

dn fie™ (s o ons Tn))=Di(pm(71’ .+., T,) for each Tys - ee 5 T, and P"’EH:’,
m=>=2, 0<i<w;

(D) f;(p™ =D;(p™ for each p"CVy, m>2, 0<i<w;

aAV) fi(@UB)=(fi(0Uf;(B), 0<i<w;

V) fileNB) =(fi(Nf: (), 0<i<w;

VD) fi@=B)=(/,@=>/BN...N0 (fi(®=>1@), 0<i<w;
(VID) f;(A0)="11, (@), 0<i<o;

(VIID) f, (D; (&) = f; (w), 0<i, j<eo;

(IX) fi(VEx (§))=VEf; (« (), O<i<w;

X f[i@Ea @)= S (« (@), 0<i<eo.

It is easy to see that f;(«),0<i<w, is a closed formula iff « is closed.

Theorem 3. For every formula « in F and every 0<i<a,
(D; (@) (V)= (f; (0))g (v) by any realization R and valuation v.

Proof. The proof is based on (p)) — (pg), T. 1.7. and T. 1.9. in [4].

With the language % we shall associate a formalized language % of
classical predicate calculus. Assume that % has the same sets of free and
bound individual variables and functors as _% and with every n-argument
predicate p™&Il,, m>2 in %, n=1, 2, ..., there are in K m-1 predica-
tes p™% i=1,..., m—1 of n argument each, and no others; and that with

every p"EVg, m>2 in ¥, there are in I 0<i<m propositional variables
p™', and no others. Moreover, there occur in & the connectives U, M,=, 1,
the propositional constant e,, e,, the quantifiers V, g and parentheses. Let

F be the set of all formulas in . Let f:F°—~F be the mapping defined
thus:

(AI) f(€0)=€0, f(em)=eco;
(AI)  f(D;(e™(tyy -+ s T =p"% (ty5 ..., T,) for O<i<m; and for j=m

F @™ (v vens T=p""1 (1, ..., 1), for every pm&Ily,
Tyseees T, T, and m>=2;
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(AIIl)  f(D;(p™)=p™* for 0<i<m; and for j=m f(D;(p™)=pm™m™1L, for
every pmcVy';
(AIV)  f(«UB)=(f (U f @)
AV) [N = (&N E);
(AVD) fa=>B)=(f()=> @)
(AVID) f(1)="11(a);
(AVIID) f (VEx (8))=VE f (« (8));
AIX) fQ@EEx(E)=FEf(x(E).
Let ¥ =(X, Cg) be a system of the classical predicate calculus with

the formalized language X and consider the elementary theory .7 (A)=
=(K, Cg, A), where A4 is the set of formulas in F defined thus: for every

n-argument (n>1) predicate p"CII,, m>2 in &, let Ay Ee the con-

junction of the following formulas:

(M VE, ..., VE ™, ..., E)e™i 1, ..., E)), for 2<i<m~1.
Let 93, m be the conjuction of the following formulas, for every PrEVT

2 (pm™i= pmi-1), for 2<i<m~ 1.

Then 4 is the set of all formulas 4pe™, RBp™ for pmcIly, p"&Ve and
m>=2.

Every realization R of ¥ in Uz @ assigns the following realization R,
of & in U: for every functor ¢, ¢g, =¢g; for every m-argument (n>1) pre-
dicate p™, m>2 and every valuation :

€)) oRy (Ths vy T =Dy (R (v, - .. » 7)) () for O<i<m,

) eR " (s s T =D QR (tys - 5 T)) () for j=m;

and for every propositional variables p™ i, m>2:
(5 PR =D, (pk (v)) for 0<i<m, and
(6) PR () =D; (PR () for j=m.

Theorem 4. For every realization R of & in U# @ the readlization
R, of K is a model (Boolean) of J (.4) and the following equation is satisfied
for each formula « in F° and each valuation v: oy (v)=(f @)r, (V).

Proof. The first statement follows from (3) — (6) and the fact that
D;, (@< D;(a) for each element a in /p,, and T. 1.1, T. 1.7 in [4]. The
proof of the second statement is by inductive argument on the length of a
formula and refers to the definition of the mapping f and to equations which
hold in 2, (see [4]).
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Theorem 5. If R, is a model (Boolean) of J (A in Uz &, then, the
equations @p=Qg,, for every functor < ®,

R (Ts > T )= (R (s -, T NI U UER ™ 2 (s 7)) Nem_y)

Uer ", oty )W)

and
PRO)=(PE G)Ne)U - - - VPR )N en U %™ )
define a realization R of % in U such that for every valuation v;
Dok (515 -+ s T ) =0 (51, -, T) () for O<i<m, m>2, and
D (0R (ysvvvs TN =pm™ (51s vy T () for j=m, m>2, and
D, (pR () = p&; ) for O<i<m, m>2, and
D, (PR (V))=P§';m—1 o) for j=m, m=2,

Moreover, for every formula ¢ in F° and every valuation v the equa-
tion ag (v) =(f a)g, (v) holds.

Proof. The proof refers to (1), (2) and to (f¥)-condition in [4]. The
second part follows from the first and T. 4..

Theorem 6. For any formula o in F, and for each valuation v:
R is a k-model of a formula o iff R, is a model (Boolean) for M (@), ie.

(a)R (v)>ek l:ff (ffk OC) RO (V) =€
if the realizations R and R, are defined as in T.5 and T.6.

Proof. The proof refers to T.3, T.4 and T.4.1. in [4].

Theorem 7. (Los" Theorem on reduced product for k-modelsy If V is
a prime filter on N+ @, for any formula « in F and Jor each valuation v:

{neN:ax, (M2e €V iff (Dnay, 0)>ex,

where l'IR,,/V is a sign for reduced product of the family realization {R,:nEN} of ¥
over the prime filter V on N [see [4]].

Proof. {nEN:ag, " =e}EViff (nEN: fca (R, ) =e,}EV, by T.6.,
iff (ff ) Rolyy (v)=e,, by Lo¥ theorem for classical predicate calculus [1],

iff (oc)an,V (v)=e,, by T.6.
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k
Theorem 8. (Compactness Theorem for k-models) F,|—=a iff there is a

k
finite subset F,' of F, such that F,'|=a.

k

Proof. F |=a iff AU{ffiB:BEF,}=ffra by T4, T.5. and T.6.,
iff AU{fiB:B&EF,"CF, and F,’ is a finite}|=ff, x, by the compactness theo-
rem of the classical predicate calculus (see [1]), iff F,'|=«, by T.4., T.5.
and T.6..

Now let R and R’ be any two realizations of _% with universes U and U’,
reprectively. If g:U—U’ is any mapping and v:VUV°—U' P, is a valuation,
then gv denotes the valuation, defined by gv (x)=g (v(x)) for every x&V, i.e.
gv:VUV°—-U"JP,. Let be g:U—U’ a bijection. Two realizations R and R’
of & are said to be isomorphic if for every valuation v:VV°—>UUP,,

every i<, every oC®, every p"cIl,, every p"c Vi, and m>=2
(@15 v s X)=X)r (=6, ff (P(x;, ..., X)=X)r (8¥)=¢,,
P (X5 ... s XJr (M) =¢; iff p™(x;, ..., x)r(8V)=¢;,

PR (WEP, iff pr' (8V)E P,.

Theorem 9. Let R and R’ be any two realizations of _F and let R,
and Rg be defined as in T.4. Then R and R’ are isomorphic iff R, and Rq are
isomorphic.

Let s be an arbitrary infinite cardinal. Let F’ be a subset of F. F' is
said to be (s, k)-categorical if each two k-models of F’ with universes of po-
wer s are isomorphic. Categoricity for sets of sentences is usually defined, [1].

Theorem 10. (Morley’s Theorem) F’' is (s, k)-categorical for some
infinite cardinal s iff F' is (s, k)-categorical for every infinite cardinal s.

Proof. F' is (s, k)-categorical for some infinite cardinal s iff ff, F’ is
s-categorical for some infinite cardinal s by T.9 ., T.5, and T.6, iff ff, F' is
s-categorical for every infinite cardinal s, by Morley’s Theorem of the classi-
cal predicate calculus (see [1]) iff F’ is (s, k)-categorical for every infinite
cardinal s, by T.9., T.5. and T.6.

Remark. Let .4 be a theory for mixed valued predicate calculi. Let R
be k-model for 4. Then T.5 and T.4 implies that theory .4 is not preserved
under homomorphisms. (see [6], T.3.2.4).
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