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1. Introduction

The theory of the spectral sets of bounded operators in the complex
Hilbert spaces was introduced by von Neumann in [3] (see also [4]), and deve-
loped by Foias and Nagy [1], [11], [12], [13] etc, Lebow [2] and others.

With some modifications, we can introduce this notion in bounded linear
operators on (left) quaternionic Banach spaces too, especially on quaternionic
Hilbert spaces (i.e. Wachs spaces), and obtain many similar and also some
new properties.

The connection between quaternionic and complex spectral sets is essen-
tial, but the basic problem — whether these two classes of sets are the same
or not — is unsolved: no proof and no counter-example is given here. Only
in some particular cases, we can prove that they are the same.

This text does not contain the ‘great results”. All results, definitions
and properties are the modifications or similar to the usual ones, expected,
and the proofs are standard. But somewhere and sometime the difficult
problems arise.

2. Notations

Throughout the paper, the symbols R, C, Q denote the field of real
numbers (or real line), the field of complex numbers (or complex plane), and
the field of quaternions (or quaternionic space). C+ and C- are the upper
and lower closed complex half-planes, and for ¢ C or g€ Q, g is the complex
(quaternionic) conjugate of gq.

If P is a subset of the complex plane, we put P*={zcC; ZEP}; we
say that P is r-symmetric of P= P*,
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H will denote a quaternionic (briefly g-) Banach space, and also a
g-Hilbert space (Wachs space) with a g-bilinear form (x, y>, H' its dual
space. The corresponding complex Banach space, or complex Hilbert space

(with form [x, y],:%((x, yy—ilx, y) i)) is Hs.

If H is a g¢-Banach space, B=B(H) is the algebra of all bounded
g-linear operators on H, B*=B(H) algebra of all bounded c-linear ope-
rators on H°.

Since obviously B C B, we may define the spectrum o (4) of an operator
ACB(H) as the complex spectrum of A in space H*. Then p(4)=C\c(4)
is its resolvent set, and if ASp (4), R(4; M) =(A—AI)~" is resolvent of A.

If A\€Q, we put K =AL KQ)=K(2), and K,=K(j) (i, j, k are the
imaginary quaternionic units).

3. A functional calculus

Assume that H is an arbitrary g¢-Banach space. Here we introduce a
functional calculus of an operator A€ B(H), more precisely the largest one
contained in the classic Riesz-Dunford’s functional calculus in H°.

Lemma. Algebra B is a real subalgebra of the complex algebra B’, and
the next decomposition is valid: B*= B+ (i B).

The corresponding projection P: B°'—B is P(X) = %(}HK0 XK)
(XE B(HY)).

Proof. Obviously, B(H)=B is a closed real subalgebra of B°, and
immediately B\ (i B)={0}. Since we can write an aibitrary operator X< B in
the form

X:%(X+K0XI?O)+% (_21)(~X—KOXI?0)=X1+1'X2

it is not difficult to see that operators

P(X)= —;— (X +K,XK), P (X)= ~;— (X—K, XK,)

belong to B=B(H). [

Suppose A< B(H). Let 4*=[4°] be the class of all complex functions
f(z) defined on an open set A(f) in C, which contains the spectrum 6 (4)
and f(z) is locally analytic on A (f) (Taylor [5], p. 288).

Let 4 be the class of all functions fE4° such that f(z) =f(z) for
zEA(NA(f)*. We call them r-symmetric locally analytic functions.
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If fE4 and D is any bounded Cauchy domain (c(4)CD, DCA(f)),
one can put:

) 7 — [ks@ rU 2O,
2wi

o0+(D)

and f(4)& B* (Taylor [5], p. 289).
Every such Cauchy domain is called the admissible domain of f.

Lemma. 2. If D is any admissible domain of a locally analytic func-
tion f(z) on o(A), then D, =DM\ D* is such a domain too.

Proof. For any arbitracy function f& 4° locally analytic on ¢ (4),
there exists at least one admissible domain D (¢(4)CD, DCA(f)), and the
integral (%) is independent of the choice of the domain D ([5], p. 280).

Since the spectrum o (A4) is r-symmetric, it is easy to verify that together
with D, D, =DM D* is also a Cauchy domain of f&_4°, and that 9(D)) is
homotopic with 0 (D). [J

That is why we can restrict us to the case when the corresponding domain D
is a r-symmetric set.

Theorem 1. Suppose f=_/4°. Then the operator

Fy=—1 f K@) R(; 2)dK ()
27wi .
o0+(D)

(D-any r-symmetric admissible domain of f), belongs to B (H) if and only if
there exists an r-symmetric locally analytic function g&< 4 on o (A), equivalent to f.

Proof. The condition is sufficient. In order to prove that
the operator f(A)=g(4)EB, it is enough to prove that K, g(4) K, = g (A4).

In view of the definition of the operator-integral (), it is easy to see
that the following is true:

f

K,g(4) K, +2L_ f K,K(g(2) R(4; 2)d (zK) =
Tl

o0+(D)
L | — - .
. fK(g(z»R(A; 2)dK (3) =
2wi
zZ0+(D)
1

o fK(g(Z))R(A; 7)dK (3).

z=9+(D)
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Since D is a r-symmetric domain, obviously z&ad, (D) if and only if
zE0_ (D*)=0_ (D), wherefrom we obtain:

— 1
K,g(4) K= +— f K(g(z) R(4; 2)dK ()=
27wi

0—(D)

1
- f K@ @) R(4; 2) dK (D)=
0+(D)
=g (4)
so that g(d4) is in B (H).

The condition is necessary. Suppose f(A)EB(H) i.e. K, f (4) K, = f(4).
In the similar way as before we obtain:

fy=—1 f K(FG® R4 2)dK (@)=
27i
0+(D)

=g (A) ’
where g(z)=%( (@) +f(Z)). Obviously g(z) belongs to 4, q.e.d.

In the real algebra 4 we identify the functions which are equal on an
open r-symmetric set contained the spectrum o(4), and introduce the usual
composition: (fog) (z2)=/(z) g(z). Then, as in the complex case, one can prove
that f—f(4) is an algebraic homomorphism of the real algebra (of equivalence
classes) 4 in the real algebra B (4).

The functional calculus so obtained is resonably to call — the quater-
nionic Riesz-Dunford functional calculus.

Let us suppose H is a Wachs space.

Proposition 1. The classes /fp=[A] and A*=[A*] are the same.
If fE A then f(A*)=f(4)*.

Proof. Since o(4) is a r-symmetric set, it is easily seen that fC.A
implies fE 4*, and conversely. In this case we have

N . K ()
fn-—— fK(f(Z))R(A ; ) dK (2)

0+(D)
1 . N
={+27i [xuerre z)dK<z>} -
zZ 0+(D)
1 %
={_5:i fK(f(z))R(A,z)dK(z)} -
zZ0+(D)

=f(4)* 0O
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From Proposition 1 we conclude that for 4 symmetric, all operators
obtained in this way are symmetric too. But for 4 skew-symmetric there is
no analogy (if we do not restrict ourselves to some subclasses of functions).
So obtained operators ary only normal.

4. Spectral sets in Wachs spaces

Although the next definition and some properties are true in more general
quaternionic Banach spaces too, if the contrary is not said, we assume the
space H be a Wachs space.

Definition 1. 4 closed set X in the (extended) complex plane is said
to be g-spectral (or spectral) set of an operator AC B (H):
1° X contains the spectrum o (A);

2° For every r-symmetric rational function f(z) having no poles on X, the
next relation is valid:

If (]I<sup|f@)].)

The spectral sets of the operator 4 as an operator on H* are denoted by
prefix “c-” (complex spectral sets).

Obviously every c-spectral set of an operator AC B(H) is g-spectral. But
we do not know whether the converse is true, i.e. whether g-spectral and
c-spectral sets are the same or not! We think that they must be different but
we have not any counter-example.

We give one weak estimation for g-spectral sets in this sense. In view of
the Proposition 3, we may restrict us ourselves the r-symmetric g-spectral sets.

Proposition 2. Suppose an r-symmetric spectral set X of an operator A,
and an arbitrary rational function f(z) having no poles on X are given. Then the
Jollowing is true:

I F) <250 | 7).

Proof. By wm(f) let us denote the set of all poles of the function f(z).
For each z&Zn (f) Un (f)*, we can write the function f(z) in the form
¢)) f(@)=g(@)+ih(2),
1 e 1 _—
where g (z) = Py (f@+f(2), k()= 5 (f@—fG).

Since g (z), h(z) are r-symmetric functions whose poles are contained in
the set ©(f)Un (f)*, thus beyond X, (1) is valid on X too, so that obviously

max {sup|g(z), sup|h(z)|}<sup|f(2)].
zZX zZX zzX

1) We assume without loss of generality that all rational functions from this definition
have the real coefficients.
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‘Wherefrom it follows

Hg(A)H<zsg§!g(2)l<zsgglf(2)\, and
LA (A) ||<sun|f(2)].
=X

Finally || f(4)] =g (4)+ih(4) k|<2251:1§|f(z) |.O

Concerning this, a question arises: Is it possible in a general case to
decrease the constant o =2 from above proposition (1<a<2)? If the answer is
affirmative and moreover o= 1, g-spectral and c-spectral sets are the same:

Proposition 3. A closed set X of the complex plane is spectral:

a) if and only if the set X* is spectral;

b) if and only if X contains the spectrum o(4) and the set X JX* is
spectral.

Proof. We prove only the nontrivial part of the last statement.

Let XDo(A4), X UX* be a spectral set, and f (z) be any r-symmetric
rational function whose poles lie beyond X.

Since the set m(f) does not have a common element with XUX*
we have

[fA@]< sup [f@D].
z=ZXUX*

But since
sup | f(z)|=max {sup /() |, sup /() [}=sup[f (2],
ZXUX* AzZX AT X* z= X

z

it follows || f(A)||<sup|f(2)|, q-e.d. O

_ Corollary 1. Let the closed set X be a spectral set of A. Then the
sets X+ =(XNCH\Us (4) and X~ =(XNC~)Uoc (A) are spectral sets too.

Proof. Since the closed set X+ contains the spectrum o (4), X =X+ (X *)*
and X~ =(X*)*, the statement follows from Proposition 3. []

In this way we may considerably reduce a fixed spectral set X, to get
such a set again.

Concerning this, it can be of some interest the next problem: Does there
exist at least one spectral set X such that the set X(\X* is not spectral?

All examples which we know are negative. Nevertheless we propose that
the answer is affirmative. If for instance, there exists an operator such that
spectrum o (4) is not a spectral set, but ¢ (4) R is spectral — (with assumption
o (4) and R do not have a common element), then the answer is affirmative.

The following three statements are standard.

Proposition 4. The intersection of all spectral sets coincides with the
spectrum ¢ (A).

If the operator A is normal, a closed set X is spectral if and only if it is
<-spectral. ‘
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Proof. The first property is obvious, having in mind the corresponding
property of c-spectral sets.

Further, since the spectrum o (4) of a normal operator is its c-spectral
set, the second statement is evident too. ]

Proposition 5. The unit disc |z|<1 is a spectral set of A if and
only if A is a contraction operator.

Proof. As in the Hilbert space, the condition || 4| <1 is necessary.
Conversely, if 4 is a contraction, then the unit disc is a c-spectral, thus a
g-spectral set also. [J

Proposition 6. (The spectral mapping theorem). Let (z) be any
r-symmetric rational function having no poles on o (A), and X be any r-symmetric
spectral set of A.

Then o (X) is such a set of the operator o (4). (]

Proposition 7. (a) A disc |z—z,|<r, whose center z, is on the real
axis, is a spectral set of A if and only if || A—z, I||<r.

(b) Its exterior |z—zy|=r is a spectral set of A if and only if
| (d—z, )7 [|<1r.

(c) The unit circle |z|=1 is spectral set of A if and only if A is unitary.

(d) Imaginary axis Jm=iR is a spectral set of A if and only if A is
skew-symmetric.

(€) The real axis R is a spectral set of A, if A is symmetric.

Proof. The proofs for (a), (b) (c), are standard.

If A is symmetric or skew-symmetric, then it is normal, so that its
spectrum is a spectral set. Therefore X =R (or X = Jm respectively) is a spectral
set of A.

Suppose Im=iR is a spectral set of A.

Let us consider the function @ (z)=(z+1) z—1)~1 It is r-symmetric
and defined on the set X=iR. It is easily seen that it maps the set X on the
set {|z|=1, zs1}. By the spectral mapping theorem, this set, and therefore
the unit circle [z|=1, is a spectral set of w(A)=(4+1I)(4—I)~'. But then
o (4) must be unitary, wherefrom by using the standard arguments, we conclude
that Re (4x, x>=0 (x=H). Thus Re (4)=0 so that 4 is skew-symmetric. []

We remark that the last statement (e) is not complete.

By analogy, it can be expected that the real axis R is a spectral set of
symmetric operators only. But this fact still awaits its solution. Even, we think
that it is not true, and that it must be a more large class of operators. But
so far without complete solution.

Concerning that, we conclude with the next unsolved questions:

(1) When the real line R is a spectral set of an operator?
(2) When a line (in a general position) is a spectral set?
(3) When a disc (in a general position) is a spectral set?

In that direction, we have a partial result only.
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Statement 1. If R is a spectral set of an operator A, then
(Re (Ax, x))*<<Re (4% x, x) || x||? (xEH).
Consequently, the operator Re (A%) must be positive.
Proof. Let us consider the function

1 1
_(z+n)2+m2— (z+n+im) (z4n—im) ’

/@)

where z,=n+imc C\R(m+#0).
Then f(z) is r-symmetric, defined on X=R, and max|f(z) |=1/m2.
zZZR

Consequently, for operators f(4) = (4 +nI)?+m?I)~! we have || f\(A) I<1/m?, i.e.
|(A+nl)?x+m?x||zm?| x|| (x€H).
From that relation we obtain
| (A+nl)?x|?>=—2m?Re {(A+nl)*x, x> (xeH),

which is possible (for every real m=£0) only if Re{(4d+nl)?x, x>>0. It
follows that
n? || x |2+ 2nRe (Ax, x) + Re (4% x, x)>0,

which is possible (for every real n) only if
(Re {4x, x))*—(Re (A2x, x)) || x|?<0 (x€H).
If we put S=Re(4), T=Jm(4), the last relation gets the form
| Txlp< ] Sx (S, Y[ x 2 (rEH\0). O

In [1} C. Foias has obtained a charasteristic property of complex Hilbert
spaces. For Wachs spaces the analogue is valid.

Proposition 8. Let H be a quaternionic Banach space. If the unit
disc is a spectral set of every contraction on H, then H is a Wachs space.

Proof. The proof is a modification of Foiag’s proof, and the conse-
quence of the following fact: The parallelogram identity in H, thus in H, is
a sufficient condition for H to be a Wachs space. ]

In a finite-dimensional complex Hilbert space the next is true: spectrum
o (4) is a spectral set if and only if 4 is normal (von Neumann [3], or [4],
p- 434). In our situation the same is valid.

Proposition 9. Let H be a finite-dimensional Wachs space. Then o (A)
is a spectral set of A if and only if A is normal.

Proof. Suppose c(A) is a spectral set of 4. If H is a n-dimensional
space, spectrum o (4) consists of the exactly 2x proper values:

X=°(A)={51,---,€n; gla'--’zn} (EJEC+)
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Let z,, z,, . .., zy, be all different proper values of 4. Then for every k=1,..., n

there exists a polynomial p, (z) of degree m,—1 such that °

Zp, if z=2z,
D@ =< z4, if z=z,=2,
0, if z=z#z, 7,
That polynomial is unique, and by using the Cramer’s rule it can be shown
that all their coefficients are real. Thus all p,(z) are r-symmetric.

By the spectral mapping theorem, we have that p, (X)=1{0, z;, %,} is a
spectral set of B, =p, (A).

For proving that all operators B, (k=1, ..., n,) are normal, it is suitable
to differ the following cases.

1. z,=0. Then the set {—1} is a spectral set of w (B,)=B,—I, so that
® (B) must be unitary. Therefore it follows that B, is normal, thus symmetric.

2. zz€R\0. In this case the set {—1,1} is a spectral set of o (B =
=(2/z;) B,—1, so that «(B,) is unitary. It implies that B,—=(z,/2) [+ U,) is
normal. Moreover, since the spectrum of o (B,) is real, B, is symmetric.

3. z,&Jm\O. Then the imaginary axis Jm=iR is a spectral set of B,,
thus (by Proposition 7) B, is skew-symmetric.

4. zy €C\(RUJm). If z,=x,+iy,, let us consider the function w(2)=
= to_1 z—1, where 1,=(x*+y»)/2x; (x,7#0). It maps the spectral set {0, z,, z,}
of B, in a spectral set {—1, ¢, 5} (J&,|=1) of  (By) = tO"IBk—I. Concequently,
® (B,) must be unitary, thus B, is normal.

In such a manner, we see that all operators B, (k=1,...,n,) are
normal.

Put: g(@2)=p,(2)+ ++« +pn, (). It follows immediately that q(z,) =
=z (k=1,..., ny), thus g(z)=z (because deg (9) =n,—1). Therefore we obtain
A='3 p(A). Since A*— 3 p, (4)* we find:

k=1 k=1

(1) A A= S p(A)* i (A)+
k=1

+ 2 (P (A)* b (A +py (4)* pr (4)),
k1

1) Ad* =S p, (4) py (A)* +
k=1

+ > (P (A) py (A)* + py (A) pr ().
k=l
Since p, (4) and p,(4) are commutative and normal, and the adjoint operator P*
of some P& B(H) coincides with the adjoint of P in HY, we can apply a
theorem of Fugled (C.R. Putnam — “Commutation properties of Hilbert space
operators”, Springer-Verlag, Berlin, 1967; Theorem 1.6.1., p. 9).
We obtain that

D (A)* py (A) + p, (A)* pr(A) = p; (A) pi (A)* + py (A) p, (A)*,
so that 4 is a normal operator, q.e.d. []
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