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§ 0. Introduction

In what follows we shall deal with a problem which professor B. Kurepa
formulated in his seminar ,,The Set Theory” which was held in 1976/1977
and also in his paper [5] (problem (6:4:2)):

Problem 0.1. Does every partially ordered set have the pioperty (K)?

(Definition of the condition (K) is given in § 1). This problem naturally
arises at the analysis of natural linear extension of pseudotree (see [5], §§ 5, 6).
At this natural linear extension of pseudotree some of its particular subsets, so
called strictly convex sets (definition 1.2) are transformed into convex subsets
of this linear extension (Theorem 1.3). So, the subject of the problem above
is the question whether every partially ordered set has linear extension in which
the strict convexity will be preserved.

§ 1. Pseudointervals and strictly convex sets

We conceive of partially ordered set as an ordered pair P=(E, <) where
< C E? is antireflexive, antisymmetric and transistive relation. Partially ordered
sets we shall denote by L, P, Q,..., L, P,, Q,,..., and corresponding rela-
tions by <;, <p, <g,...» <r;5 <p,» <g,,.... In the cases, where it is pos-
sible, instead of <p, we can write simply as <,. For q, b&E and asb let
us define relation | like: a||b if and only if (a, b)) < and (b, a)& <. Let
aC E; then we put [a]p: = {x.". xE E and x<<a\/x>aV x=a}. For partially order-
ed set Q=(E, <<Q) we shall say that it is an extension of partially ordered
set P=(E, <p) if <pC <. Particulary we shall consider linear extensions,
that is the case when Q is linear ordered set.

Now, let us write down main definitions of this section taken from [5], § 6.
Definition 1.1. Pseudointerval of partially ordered set P=(E, <)
with ends a, b, a<Cb denoted by ]a, b[ is the set

Ja, b[: ={x.".xEE, (a<x)AT(x>b) or (x<b) A\ 1{(x<a)}

or shortly
la, B[: =([alp UBI\((- > @)pU(Ob, -)p)-
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Definition 1.2, Let P=(F; <) be a partially ordered set, subset J is
called stiictly convex set in P if from a, b&J, a<<b follows that Ja, b[CJ
and J cannot be decompose dinto two disjoint parts J, % @ #J, such that every
point of J, is incomparable with every point in J,.

We can verify that for linear ordered sets pseudointervals coincides with
closed intervals and strictly convex subsets coincides with convex subsets and
also, in general case, pseudointerval need not be a strictly convex set.

Pseudotree or ramified set is defined (see [2][3][4]) like partially ordered
set (R, <) such that for every x& R the set (-, X)&, <) is a chain. If that set
is furthermore well-ordered then pseudotree (R, <<) we call tree (see [5] and
also [3], §8. A). We can be easily convinced that, if (R, <) is pseudotree then
every set JCR written in the form J= U[x, g, <) where L is a chain,

is a strictly convex subset. Therefore, espemally, the sets formed by [x, ‘)&, <)
are strictly convex for every x&R.

let P=(E, <) be an arbitrary partially ordered set. Collection of all
strictly convex subsets in P we shall denote by & (P). Let us observe that for
every xC E {x}&% (P) holds.

For partially ordered set P=(E, <) let us observe the following pro-
perties which we shall meet later:

(K) There exists a linear extension L=(FE, <;) of partially ordered set
P such that ¥ (P)C K (L) hold.

(S) For every three points a, b, cEE, such that a<<pb, allpc and b|pec,
there exists a strictly convex set JCE such that a4, b&J but ¢ J.

Partially ordered sets with properties (K), (S) we shall call (K)-, (S)-par-
tially ordered sets respectively. Every pseudotree (R, <) is (S)-partially ordered
set. We shall say that for a, b, cER, a<b, a| /b and b|| ¢ desired strictly con-
vex set is [a, + )&, <)-

That for every pseudotree (R, <<) the answer problem 0.1. is positive
states the following theorem.

Theorem 1.3. If L=(R, <) is an arbitrary natural linear extension
of any pseudotree (R, <), then F (R, <)CHK (L).

Proof: Let us assume the contrary — that there exists JEZ (R, <)\K (L).
So, there exist three different points a, b, c© R such that a<<;c<;b,a, b&J
but ¢&J. Let us put

Ji={x&J..x<c} and J,: ={xEJ.".c< x}.

So, J,UJ,=J, JNJ,= o and since acJ, and b<J, it follows that J,
and J, are non empty. According to definition 1.2. we conclude that there
exist points a,&J, and b, EJ, such that a,<b,. Since c¢&J and ]a,, b [CJ,
we have that c¢]a,, b, [ which, considering that a,<,c<;b and the fact
that L is an extension of (R, <), means that a, | ¢ and b,|c. So especially
we have that c¢&[a,, -)& <). Since L is natural linear extension of (R, <)
using the theorem (5:1) II from [5], it follows that [a,, - )&, <) is convex in
L, in contradiction with c¢&[a,, - )&, <), ,E[a,, - )& <) and a, < c<pb. The
contradiction proves the theorem.
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§ 2. Basic results

We shall write down some definitions taken from [1].

Let ={P, =(E, <a)..a & A} be an arbitrary collection of partially order-
ed sets on the same set E. The product of collection /2 is the partially o-der-
ed set defined by

[IP.:=(E N <.

1=y aEA

Especially, for @={P,, P,} we put P, P,: =(E, <, N <,).

By dim P, where P=(E, <) is an arbitrary partially ordered set, we
denote cardinal function defined by dim P: =min {|_%|.. % is a collection
of linear extensions of P and P= []L}.

Lep

Let P=(E, <) and Q=(E, <,) be two partially ordered sets on a same
set E. We shall say that P and Q are reciprocally conjugate if two arbitrary
different points a, b E are ordered in only one of these partially ordered sets,
in other words holds: a<pb or b<pa if and only if al|yb. It is clear that
in the last equivalance P and Q can exchange their places. Partially ordered set
is called reversible if it has a conjugate.

Lemma 2.1. ([1], Lemma 35.1). If partially ordered set P and are conju-
gate then L, =(E, <p'U<,p) and L,=(E, <p U (<)Y are linear extension
of Pand P=L L,.

Lemma 2.2 (1], Theorem 36.1, (1) < (3)). Let P=(E, <) be an ar-
bitrary partially ordered set, then dim P<2 if and only if P is reversible.

Proof: One side of equivalence follows according to lemma 2.1. so let
us prove another one. Let us assume that dim P<{2 which means that there
exist linear extensions L, =(E, <,) and L,=(E, <,) of P such that P=L L,.
Let us determine the partially ordered set Q by Q=(E, <, N(<,)~Y and prove
that Q is conjugate with P. If a and b are arbitrary two different points of E
and let, for determination, be a<,b, then it holds either a<,b, that is a< pb
or b<C,a, that is a<,b which means that the pair (a, b) is in only one of the
relations <, and <. So, arbitrary two points @ and b in E are ordered in
one and only one of the relations <, and <,. Q.E.D.

An answer to the problem 0.1. is given by following theorem:

Theorem 2.3. Every partially ordered set P=(E, < p), such that dim P<2,
satisties condition (K).

Proof: Let dim P<{2. According to lemma 2.2. there exists a partially ordered
set Q=(E, <,) which is conjugate with P. According to lemma 2.1. we conc-
lude that L=(E, <pU<,) is a linear extension of P and Q. Let us prove
that P and L satisfy condition (K) (see §1.). Let us assume the contrary, that
is, L along with P does not satisfy condition (K), which means that there exists
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strictly convex set JCE of P which is not strictly convex in L. Hence, there
exist three reciprocally different points a, b, ccE such that holds a<,c< b,
a, bcJ and c¢&J. Let us put

J={x&J x< e}, J,={x&J..c< x}

then J=J,UJ,, J, @ #J, and J NJ,= @. By definition 1.2 of strictly convex
set we conclude that there exist ¢,=J, and b,&J,, such that a,<pb,, so we
can put g, =a and b, =b, that is to assume that a<<,b. We have that ]a, b5[CJ
and therefore cZ]a, b[. Since a<<;c< ;b it must hold a||pc and b|pc and
therefore a<<,c and c¢<pb, because of the fact that Q is conjugate with P
and L is an extension of Q too. Because of transitivity of Q we have a<,b
which is contradictory with a<pb. This contradiction proves the theorem.

Main Theorem 2.4. Let P=(E, <) be an arbitrary (S)-partially ordered
set, then P satisfies condition (K) if and only if dimP<2.

Proof: According to theorem 2.3. it remains to be shown that every
partially ordered set P which satisfies condition (S) and (K) has dimension
<2. Let L=(E, <,;) be a linear extension of P, such that every strictly convex
set in P is also convex in L. It is sufficient to prove that Q= (E, <,\<p) is
partially ordered set and conjugate with P. Antireflexivity and antisymmetry
of relation <,=<,\<p is obvious, se let us only prove its transitivity.
Let a, b, ¢ be three different points of E such that a<,c and c¢< b holds,
then by definition of this relation must be a<,c, c<,b, a| pc and bjpc,
owing to the fact that L is linear extension of P. So, a< b and in case that
a||pb we have that a<,b what we needed. Let us consider the case when
a<pb. So, we have that for three different points a, b, ¢ of E a<pb, aj|pc
and b|| pc hold and since P satisfies condition (S) there exists strictly convex
set JCE such that a, b&J and c¢-J According to the condition (K) we have
that J is also a convex set in L and, therefore, [a, b],CJ. Since c&[a, b], CJ
we obtain contradiction with c¢J. This contradiction proves the transitivity of
relation <.

Now, let us prove that P and Q are conjugate. Let a, b E be two dif-
ferent points and, for determination, be @< ,;b. In case that a and b are com-
parable in P, which means that a<pb, we have, by definition of Q, that
alph. If a and b are incomparable in P, which means that al|pb, then by
definition of Q must be a<<,b. The proof is finished.

Consequence 2.5. Every pseudotree (R, <) has dimension <2.

Proof: in §1. we have already proved that every pseudotree is (S)-
partially ordered set and since according to theorem 1.3. we have get that it
is also (K)-partially ordered set, the conclusions of the consequence 2.5 follows
directly from the previous theorem 2.4.

Let P=(E, <) be an arbitrary partially ordered set. We shall consider
the following partially ordered set (F (P), C) where K (P) is the collection
of all non empty strictly convex subsets in P defined in §1. The following
theorem gives us one more information about (K)-partially ordered sets.
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Theorem 2.6. Let P=(E, <p) be an arbitrary partially ordered set
with property (K), then dim (K (P),C)<2. )

Proof: Let L=(E, <,) be a linear extension of the set P, such that
K(PYCK (L) Let L, = (E x {0, 1}, <,) be lexicographical product of sets L = (E,
<) and ({0, 1}, {(0, D)}) (.e. {0, 1}, <), where <<={(0, 1)}). For every
JEX (P) by J where J'CE x{0, 1}=E’ we denote the set which is obtained
from Jx {0} by convex closure, which means that

J' = U{la, Bz, . a, BET x {0}}.

Let ' (P): ={J' .-.JEX (P)} (CK (L)), then we directly verify that the
partially ordered sets (K (P), C) and (X' (P), C) are isomorphic. Let L,-=
(E" x {0, 1}, <,) be the lexicographical product of linear ordered sets L, = (E’ <,)
and ({0, 1}, {(0, 1)}). Similarly as for J'EX’ (P) we define

J'=U{la, bl a, bEJ x {1}}.

Let us put K" : ={J"..JEK (P)} (CK (L,). It is clear that the partially
ordered sets (X' (P), C) and (X' (P), C) are reciprocally isomorphic which
according to the above means that (X (P), C) and (X"’ (P), C) are isomorphic.
According to the above construction we verify that the collection &' (P) satis-
fies the following condition: (x). If a point a”’€J,"\J,”" is to the right (left)
of convex setJ,”, where J,”’, J,"" €X'’ (P), then there exists a point b"' &J,""\J,”
which is different from &'’ and is also to the right (left) of J,”".

Let 2" &J,""\J,”” be to the right of J,””, which by definition means that
there exists points ¢’, d'<J,’, such that a’'clc’ x{1}, d'x{1}];,, So, it must
be that ¢'cJ’\J,’ and ¢’ is to the right of J,”. Applying again the above
definition we conclude that there exist e, f&J, such that ¢ Ele x {0}, fx {0},
So, necessarily ecJ,\J, and e is to the right of J,”. By definition of lexico-
graphical order and definition of the sets J' and J'* we conclude that (e x {0}) x {1}
and (ex {1}) x {1} are two different points in J,"\J,”’ being to the right of J,"".
For desired point 4" we can take one which is different from a’’. The case
when &’ €J,""\J," is to the left of J,”" can be settled analogously.

Let L,=(E", <) be completification of linear ordered set L,=(E", <,)
in the sense of Dedekind, where we put E""=E’ x {0, 1}. Let us define the
collection ‘:]Z(P) by

K (P): ={J" T EX" (P)},

where J'' denotes the closure in order topology of linear ordered set I:Z. Using
the property () of collection "' (P) we directly check, that ('’ (P), () is
a partially ordered set isomorphic to (ﬁ (P), C). Since f,z is complete linear
ordered set we conclude that the collection X (P) consists of closed intervals in L,,
that is, every .7697£(P) is of a form [x, Vg, Finally we have that (3 (P), C)
is isomorphic to @i (~P), C) namely to some collection of closed intervals of

a linear ordered set L, which according to [1] (Theorem 36.1, (3) & (4)) means
that dim (% (P), C)<2, that was to be proved.
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Using the previous theorem we can prove the consequence 2.5, that the
dimension of an arbitrary pseudotree is <2, on a different way. It is known
that (R, >) is isomorphic to ({[x, ' )& <)..XER}, C) and as we indicated in

§ 1. that
{x, dr, <) - *ER}CK (R, <)

and since, according to the theorem 1.3., (R, <) is a (K)-partially ordered
set, we have, by previous theorem, that

dim (R, <)=dim ({[x, -J&, < *ER}, C)<dim (K (R, <), C)<2,

what we needed.

But, the converse holds as well, i.e., if {[x, ‘)& <. *ER}CHK (R, <),
then (R, <C) is a pseudotree.

In connection with the problem 0.1. naturally appears the following
problem:

Problem 2.7. Does for every partially ordered set P=(E, <), dim & (P),
(C)<2 hold?

I am very gratefull to professor B. Kurepa for his support and interest
on my work.

REFERENCES

{11 B. Dushnik — E. W. Miller, Partially ordered sets (Amer. J. of Math.
63 (1941) pp. 600 — 610),

[2] B. K ure pa, Tableaux ramifiés d’ensembles. C.r. Acad. Sci. Paris 199 (1934) 112—114),
; 13%3)] D, Kurepa, Ensembles ordonnés et ramifiés (Publ. Math. Univ. Belgrade 4 (1935),

[41 B. Kurepa, L’hypothése de ramification. C.r. Acad. Sci. Paris 202 (1936) 185—187.

[5]1 B. Kurepa, Ramified sets or pseudotrees (to appear)

Prirodno-matemati¢ki fakultet.
Beograd



	207.tif
	208.tif
	209.tif
	210.tif
	211.tif
	212.tif

