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Abstract. In this paper we describe a class of conditions sufficient for the existence of
a fixed point which generalize several known results. We introduced the concept of a
Jf-contraction and generalized f~contraction T of a metric space X into itself. Banach’s contrac-
tion principle can be extended to (generalized) f-contractions. In other words, a fixed point
theorem for relaxed generalized f-contractions is proved, and an example is given to show the
established results are indeed extensions.

1. Introduction and results

A number of authors have defined contractive type mappings on a
complete metric space X which are gereralizations of the well-known Banach
contraction, and which have the property that each such mapping has a unique
fixed point. The fixed point can always be found by using Picard iteration,
beginning with some initial choice x,& X. The well-known Banach contraction
principle is the following:

Let T:X—X be a mapping of a complete metric space (X, p) into itself.
If T is a contraction, i.e. if

A) p[Tx, Tyl<ap[x, y] for some «c[0, 1),
and all x, y& X, then:

(@) T has a unique fixed point & in X;

(b) T (x)—>E& for all x&X, and

(c) There exists an open neighborhood U of § such that for any neigh-
borhood V of TE there is an n(V) which satisfies nzn(V)=> T* (U)CV, or

T"xeKE, e (1-a)~1p[x, Tx]),
Jor every x& X, and n€N, where K is closed ball.v

12+
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In other words, if T is a contraction mapping on a complete metric
space X, then the equation Tx=x has in X a unique solution. The theorem
of Banach and its extensions usualy are proved by the fact that the geomet-
rical series is convergent. Some different proof of the Banach theorem is given by
R. Kannan, where the investigated properties of subsets of X, defined as
S, IxEX:p[x, Tx]<y}, v>0. For extension of Banach contraction principle
and certain other related results, see references.

In [25] we have proved the following theorem:

Theorem T. Let T:X—>X be a mapping on X and let X be a T-orbit-
ally complete metric space. If T satisfies the following condition: there exist real num-
bers a;, B for every x, y& X such that: o, + e, +a,>B and — o, 20V B — o, 20, and

(T)a,p[Tx, Tyl + o, p[X, Tx]+ oy 0 [y, Tyl + o, min {p [x, Ty}, o[y, Tx] } =Bp [x, y],

then for each xC X, the sequence (T"Xx) converges to a fixed point of T.

Special cases of Theorem 7' have been discussed by Ivanov [14], Cirié
[10], R. Kannan [15], S. Reich [20], Bianchini [7], Rhoades [21], Hardy-Ro-
gers [12], Kurepa [17], Rakotch [19], Boyd and Wong [5], I. Rus [22], and
others (see references).

The essential in all so far published results in this domain is based, as
it seems to us, on inequalites of the form x,,, ; < « x,, (x,ER, %£(0, + ), « E[0, 1))
and on Picard’s method. Having this fact in view, we started from a result
of S. Prefi¢ [17]. Our first step was a theorem, proved in the papers [24],
[25], concerning ordered sets and generalized difference relations; from it we
have deduced the following result:

Proposition 1. ([25], p.236.) Let f:R"'>R, (kEN) be monoto-
nically increasing (with respect to every real argument) and semihomogeneous
mapping, and let the sequence (x,) of nonnegative real numbers satisfy the
condition

1) _ Xns koSS (% Xy €y Xy o s G Xp ), REN
k fixed natural number, where o, o, ... , oy are nonnegative real constants and
S (g oy, ooy ) E(O, 1). Then, there exists numbers ¥ >0 and 8 (0, 1) such that
) X,= Fo0m=1,2,..), = max {x 07}

i= k

sae vy

The proof of this proposition is given in [25] and otherwise it is per-
formed by the application of mathematical induction.

We say - that the mapping f:R%X — R, (kEN) is semihomogeneous iff
CFGxy . 3X)SSS (X ..., XD, 50,

It is clear that the condition of semihomogeneity implies homogeneity for the
mapping f.
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1.1. In this paper we introduced the concept of a f-contraction T of a
metric space X into itself i. e. of a mapping T:X — X such that for every x, yEX
there exists nonnegative real numbers o;(x, Y)=o; (i=1, ..., 5) such that
(B) o[Tx, Tyl=f(a 0% 3] ayplx, Txh ayply, TVl agplx, Ty), asely, TxD),
where sup {f (a;, oy, s, @y, a):Xx, yEX}=AC[0, 1) and the existing mapping
f: (Rg)5—> RS %10, + o0) is increasing and semihomogeneous.

Let T be a mapping of a metric space X into itself. For ACX, let
6 (A)=sup{pla, b]:a, b A} |
and for each xc X, let
OT"x, n={Tmx, Tm+1x,...,T™"x}, m=0,1,...; n&N,
O@Tmx, )y={Tmx, T™+1x, ... Y}, m=0,1,...,

where it is understood that T®x=x. A space X is said to be T-orbitally com-
plete iff every Cauchy sequence which is contained in () (x, ) for some x& X
converges in X (c. f. [25]).

Further, as a corollary of the last result, we got the following
statement.

Lemma 1. (Corollary of the Proposition 1, see [25]).

Let T:X-->X be a f-contraction on X and let n be any positive integer.
Then for each x& X and all positive integers i and

(a) 1<i, jsn= p[Tix, TV'x] =X [0 (x, n) ];
(b) VxEX) @k=n) plx, Txxl=0o[0(x, n)];
(© s[0(x, ©)]1=(1-M)""p[x, Tx].

Now, we can formulate a corresponding statement for fcontractive
mappings.

Theorem 1. Let T be a f-contraction on a metric space X and let X
be T-orbitally complete. Then:

(8) T has a unique fixed point £ in X;
(b) lim T"x—§ for all x€X, and
() TxCKE N1 -N"telx, Tx]) for every xC X,

and n= N, where K is closed ball.
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But, if we wish to weaken the condition of semihomogenity, replacing
semihomogenity on R, £ (0, o) by semihomogenity on [«, + ) CR, we obtain
the definition semihomogenity of order «=1. Precisely said, the mapping
f:RE —R, (kEN) is semihomogeneous of order a=1 iff f(x,...,8x)=<
=8f(x, ..., X)yx,=+--=x,=1, for each §&[«, + ) and any a=1. Then
occurs the deciding moment when a sequence (x,) defined as in (1) loses the
property of tending to zero with a geometric velocity, but still converges to zero.
In connexion with that, we shall prove the following.

Proposition 2. Let the mapping f:R'fﬁ’l—>R+ (k&N) be increasing
in each coordinate variable, semihomogeneous of order « = 1, and with the properties
VO, «]) (f(t, ..., D<tAlim sup f(y,...,»)<t), and let the sequence (x,)

y->t+0

of nonnegative real numbers satisfy the condition
(3) xn+k éf(x,,, xn+1’ sy xn+k), nEN,

k being a fixed natural number. Then the sequence (x,) tends to zero. The velo-
city of this convergence is not necessarily geometrical. The proposition holds
even when o= + oo.

In connexion with this, we shall introduce the concept of generalized
f-contraction T of a metric space X into itself i. e. of a mapping T:X —X such
that for all x, yC X,

© plTx, Tyl=f(plx, ¥1, olx, Tx], o[y, Ty}, o[x, Tyl, oy, Tx]),

where the existing mapping f:(R%)5—> Rid=°f[0, + o0) is increasing, semihomogeneous
of order =1, and with the properties

M@, a)(f(t, ..., <IN limHsglpf(y, cees IO,

We assume that the case a= + o is also possible.

And finally, at the next step we prove a very general fixed point theorem
which generalizes great numbers of known results.

Theorem 2. Let T be a generalized f-contraction on a metric space X
and let X be T-orbitally complete. Then for each xSX, the sequence T x)
converges to a fixed point of T.

In [26] we have proved the following theorem.

Theorem. T1. Let T be a mapping of a metric space X into itself

and let X be T-orbitally complete. Suppose that there exists a self map f on R?

such that f is (VtSR,)f(1)<t, lim sup f(»)<t(t&R,) and with the property
y—>t+0

(D) olTx, TyI=f (D), AC{p[x, ¥], plx, Tx], oy, Tyl, olx, T¥], o[y, Tx]},

for each x, yCX. Then for each xS X, the sequence (T"x) converges to a fixed
point of T.

The proof of this theorem is given in [26] and it is based upon the
proposition 3, proved in [26].
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Proposition 3. Let the mapping f: R, —R, %L (0,4 o) with the pro-

perties (VtER,)f(t)<t and limsup f(¥)<t(tER.), and let the sequence (x,)
y—t+0

of nonnegative real numbers satisfy the condition x,,,<f(x,), ncN; then the
sequence (x,) tends to zero.

Special cases of f-contraction or generalized f-contraction have been dis-
cussed by

(4) (Rakotch [19]) There exists a monotone decreasing function
a:(0, ©)—[0, 1) such that, for each x, yc X, x5#£y,

p[Tx, Ty]<ap[x, ¥}

(5) (Edelstein [11]) For each x, y&X, x#y,

e [Tx, Ty]<p [x, y].

(6) (Boyd and Wong [5]) There exists a continuous function ¢ on non-
negative reals numbers R, satisfying ¢ (f)<<t for ¢>0 such that for all x, ycX

e [Tx, Tyl <o (e [x, ¥])

(7) (Kannan [15]) There exists a number ac (0, 27%), such that, for
each x, yc X,

o [Tx, Tyl<a(plx, Tx]+ oy, T¥D).

(8) (Bianchini [7]) There exists a number o &[0, 1), such that for
each x, y& X,

p[Tx, Tylsamax {p[x, Tx], o[y, T¥]}.

(9) (Reich [20], Rus [22]) There exists nonnegative numbers a, b, ¢
satisfying a+b+c<1 such that, for each x, yc X,

e[Tx, Tylsaplx, Tx]+bely, Tyl +cplx, y]
(10) (Sehgal [23]) For each x, y&X, x+#J,

o [Tx, Tyl<max {p[x, y], ¢ [x, Tx], o[y, T¥1}.

(11) (Rhoades [21], Chatterjea [8]) There exists a number A<[0, 1) such
that, for each x, yE X,

e [Tx, Tyl<hmax {p[x, Tyl, o[y, Tx]}.

(12) (Hardy and Rogers ]12]) There exist nonnegative constants g; satis-
fying a, +a,+a,+a,+a,<1 such that, for each x, yc X,

o[Tx, Tyl <a, p[x, Y] +a, 0 [x, Tx]+ a0y, Tyl +a,0[x, Tyl +as 0 [y, Tx].

(13) (Ciri¢ [9], S. Massa [18]) There exists a constant q<[0, 1), such
that, for each x, y& X,

o [Tx, Tyl<gqmax {p[x, y], o[x, Tx], ¢ [y, Tyl, p[x, Ty], oy, Tx]}.
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Geometricaly:

S Tx Tr Tx Ty

(A) = @)=+ (5= (6) > (D)
Y
©® (DO=>@® =010 (9
Y U
MN=@) >0+ A1) = (12) & (13) > (B), (C), (T), (D).

Since conditions (A4) and (4) —(13) imply and the condition of generalized
J-contraction, our Theorem 2 is a generalizations or Theorems of Massa [18],
Ciri¢ [10], R. Kannan [15], S. Reich [20], Rhoades [21], Bianchini [7],
Hardy-Rogers [12], Kurepa [17], Rakotch [19], Boyd and Wong [5], I. Rus
[22], and others.

The following example shows that a generalized f-contraction need not
be a condition (4) and (4)— (13).

Example 1. Let X=[0,+ o) and define T:X->X by Tx=x(1+x)"1,
and distance function p is the ordinary euclidiean distance on the line. The
mapping T is a generalized f-contraction already for mapping f: (R1)5—>R(3r,let
be define as

St b, 1, 1y, 1) S8 (L 1)70, (1,2 0).

Then it is easy to verify that f satisfies all the conditions of Theorem 2.
Furthermore, for any x, y& X

T, Ty] - — ¥ o [x=V]
l4+x+y+xy 1+|x—y|

:f(P [x’ y]s P[x’ TX], P[y’ -Ty]9 p[xs -Ty]a P[ys Tx])

Thus (C) holds. Since X is T-orbitally complete, it follows by Theorem 2
that T has a unique fixed point — it is a point 0. However, T does not
satisfy (4) and (4) —(13), for otherwise there is a g<<1 such that for all x< X:

2
(14) o[To, Tx]:—xéqmax{o, ok x].
1+x 1+x 14+x
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Since for any x& X, x2(14+x)"1=x, it follows by (14) that for each x>0,
x(1+x)"'=gx that is (1+x)~'<g for each x>0.

This is clearly impossible. Thus, T does not satisfy (4) and (4)—(13)
for any value of g<<1. Therefore, S. Massa, Cirié, Kannan, Reich, Rhoades
B., Hardy-Rogers, Kurepa, Rakotch, Boyd and Wong, I. Rus and other authors
results is in fact a special case of Theorem 2.

The next result follows easily from the above Theorem.

Theorem 3. Let T be a mapping of a metric space X into itself and
let X be T-orbitally complete. 1) If there exists a positive integer k such that
the iteration T* is a f-contraction, then

(@) T has a unique fixed point £ in X;
(b) lim T"x=%, and
(© e[Trx, E}=Am (1 =271 _p for every xE X,

where M =max {p[Tix, T"*¥x]:i=0, 1, ... ,k—1} and m=E (n) is the greatest
integer not exceeding njk.

2) If there exist a positive integer k such that the iteration T* is a genera-
lized f-contraction, then T has a unique fixed point £ in X and lim Trx=E&.

1.2. Definition. A mapping T of a space X into itself is said to be

orbitally continuous if ucX and such that u=lim T" x for some xEX, then
i—o

Tu=lim TT" x.

i—o0

Generalized f-contractions and f-contractions need not be continuous,
but are such that fixed point theorems may be proved without assumption
of an orbitally continuity. The following theorem shows that every generalized
Jf-contraction and f-contraction ‘is orbitally continuous in the sense of the
definition.

Theorem 4. Let T:X—X be a f-contraction or generalized f-contraction
mappings of a metric space X into itself. If uS X is such that u=1lim T" x for
i—>o0
some x& X, then Tu=1im T"+1x,
1.3. The purpose of the present section is to prove one Theorem in which
we have omitted the completeness of the space from each. We have obtained

the same conclusion as in Banach’s Theorem but with different sufficient
conditions.

Theorem 5. Let X be a metric space with p as metric. Let T be a
map of X into itself such that:
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(@) T is an f-contraction or generalized f-contraction;

(b) T is continuous at a point ECX, and

(c) There exists a point xC X such that the sequence of iterates (T"x) has
a subsequence (T" x) converging to &.

Then & is the unique fixed point of T.

Remark: The proof of this theorem is very similar to that of M.
Edelstein in his paper [11]. If we compare this theorem with Theorem 1, 2 we
see that we have omitted the completeness of the space and instead, we have
assumed conditions (b) and (c). The conditions () and (c) in Theorem 3 together

do not guarantee the completeness of the space. The easy example in support
of this is the following:

Example 2. Let X=[0,1), Tx=x/3 and the distance function p is
the ordinary euclidean distance on the line.

2. Proofs of Theorems

Proof of Lemma 1. (2) Let x&X be arbitrary, n be any positive
integer, and i and j satisfy the condition of Lemma. Then Ti-!x, Tix, TV-lx,
T x& 0 (x, n) and since T is a f-contraction and from Proposition 1 for sequence
X;, ;%L o [T?x, TV x] we have ~

p[Tix, Tx]=p[T(T'x), T('x)1=f (o p [Tt x, TV-1x],
ap [T1x, T'x], ayp [TV x, T'x], ap[T% 1x, Tx), asp[Tix, TV-1])

s L omxlide[0(x, n)], L= max {x ,0°7}, 6€(0, 1),
i=1,2, ..,k

which proves the assertion (a) of Lemma, and the following corollary (b)
VxeX)@ksnelx, Tkx]=0[0(x, )]

(c) Let x&X be arbitrary. Since o[0(x, )]<c[0(x, 2)]<..., we see
that o [0 (x, ©)]=sup{c [0 (x, n)]:nE&N}. Then let n be any positive integer.
From the corollary to the previous Lemma, there exists T*x& O (x, n) (ksn)
such that p[x, T*x]=c[0 (x, n)]. Applying the t iangle inequality and assertion
(a) of Lemma, we get

elx, T*x]<p[x, Tx]+p[Tx, T¢x]
se[x, Tx]+rc[0(x, n)]=p[x, Tx]+p[x, T*x].

Therefore,
o[O@x, m]=plx, T*x]=(1-N"1p[x, Tx].

Since n is arbitrary, the proof is complete.
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Proof of Theorem 1. Let x be an arbitrary point of X. We can then
show that the sequence of iterates (T"x) is a Cauchy sequence. Let » and m (n<<m)
be any positive integers. Since T is a fcontraction, it follows by Lemma 1 that

p[Tx, T x]=p [T (T 1 x), T "1 (T" ' X)Isha [0 (T 'x, m—n+1)].

According to the above Lemma 1, there exists an integer k,, n<k,sn-m+1,
such that

o [T, T ("1 9) | =6 [0 (T"" %, m—n+1)].

Since T~ 1x=TT""2x, Tk (T"~'x)=Tk+1 (I"~2x), applying now Lemma 1 (a)
to p[TT" 2x, Tkt T»~2x] we obtain

p[Tr1x, ThT* 1 x]=Ac [O (T2, k,+ 1) ]S [0 (T2 x, m—n+2)].
Therefore, we have
p[Trx, TP x]1< s [O T 1x, m—n+ D]I=WNc(T"2x,m—n+2)].
Proceeding in this manner, we obtain
plTx, THx]1<Ae [O (T x, m—n+ D] . - - X6 [0 (x, m)].
Then it follows by Lemma 1. that
(15) p[Tx, Tmx]1=A (1 -1 p[x, Tx],
which proves that the sequence (I"x) is a Cauchy sequence. Since X is

X is T-orbitally complete, (7" x) has a limit £ in X, (§ =lim x,=lim Tx,_, =lim 7" x).
To prove that TE=E, consider the following inequalities:

(15.1) o X TE]=p[Txu_1, TEISS (0 [Xn_y> €L a0 [Xny> X,
%0 (€ TEL ayplx,_y, TE] asplf, x,])
and from Lemma 1 we have
plx, TE1= 20" (0C€(0, 1), nEN).

Letting n—> oo one gets p[£, TE]=0. Hence £ is a fixed point under T.
The uniqueness follows by f-contractivity of T, where, if 8 is an element of
X such that T (3)=3, then from Lemma 1

r=pl[& d1=f(x,r, ayr, ayr, a,r, asr) >r=0

So we proved (a) and (b), as x was arbitrary. Letting now m tend to infinity
in (15), we obtain the inequality (c). The proof is complete.

Proof of Proposition 2. Let f,=max{x,, X,.,, ..+ s Xp,x_4}> then {,=a
or t,<<a. Now if t,=z«, by the properties of f(semihomogeneous order « and
monotonicaly)

xn+k§f(xm Xpggs »oe s xn+k) gf(t,,, tn’ vee s t")
<t,f(1,1,...,1)
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Applying Proposition 1 we obtain x,< ¥ 0"(ncN, 6&(0, 1)). Hence for
n— oo, x,—>0. Contradiction. Meanwhile, for ¢r,<a we obtain.

xn+k§f(xm xﬂ+1’ A xn+k) g.f‘(tll! tﬂ’ LN | tn)<tn'

Therefore, for all n&N is ¢,,,=¢,, and 1,=X,,,_,(, for some s(n) between 1
and k, where x,,,<t,(m&N). Therefore either 7, tends to a finite limit gq.
Therefore lim sup x,<g. We now prove that lim inf x,>q. Puttingn=m+k+1
and s(n)=2k-+1—i we obtain

(16) Xmii=tmik+129-
Now, by (16) and the monotonicity of f,

(17) xm+i§f(xm5 xm+1-* M & xm-H') gf(tm’ tms LRCRE S tm)’

where ¢, is in every place except the sth, where there is x,. Here i is a
function of m and its values can be 1, 2, ..., k. Now if lim inf x,=q¢—2c<g,
then there exists a strictly increasing subsequence {m,} of the positive integers
such that x,,<g—c for e=1, 2, 3, ... Moreover, we may choose the subsequ-
ence so that each m, corresponds to the same value of i in (17). Hence, from
(16) and (17), g<f(tm,, . .. , tm,) Where, for all e=1, g—¢ occurs in the same
sth place. Letting e — oo, we deduce from the condition of f that ¢g<f(q, ..., g),
which contradicts. Hence g<lim inf x, and this, together with the result
lim sup x,<g, shows that

lim x,=q(q<f(q, ..., q) <q=>q=0).

Proof of Theorem 2. For each nEN, let A, =sup {p [T?x, T?X]:p, g=n}.
Since A, is nonincreasing sequence in R, there is a A=0 such that
A,—A(n— ). We claim that A=0. If A>0 then for any p, g&EN,

p[TPx, Tix)1<f(o[T?P1x,Te " x}, p[TP~ x, TPx], o [T9 ' x, T9x], o [TP~'x, T4 x],
e [Tt x, T7x]).

Therefore, if p, g=n, it follows that

A

A=f(Aa i A et Buis Any)

and hence applying Proposition 2 to the sequence (A,) we obtain A=0. This,
implies that (7"x) is a Cauchy sequence in X and hence, by completeness,
there is a £€ X such that 7"x —£ (n— ). Now since (17.1.):

n—1°

e[TE, T*'x]<f(p[E T"x], o[, TE], p[T"x, T"*'x], p[E, T"*'x], p[T"x, TE]).
Therefore, as n—> o the above inequality yields
r=P[T£, i]gf(O, r, 0, 0) l‘)éf(r, r,r,r, r)

and hence applying Proposition 2 we obtain thus T§=E.
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To prove uniqueness, suppose theie is a u£& for which Tu=u, and TE=£. Then
r=plu,&]=p[Tu, TEI<f(r, 0,0, r, V<f(r, 1, 1,1, )<r,

contradicting r>0. Thus £=u.

Proof of Theorem 3. Since 7% has a unique fixed point £ and
T*(TE)=T(TkE)=TE, it follows that TZ=E&. Its uniqueness is obvious.

To show (c), let n be any integer. Then n=mk+j, 0<j<k, m=0, and
for every x& X, T"x=(T*)" T x. Since T* is a f-contraction, it follows by part
(c) of Theorem 1 that

plTx, Elsam(1-W)"tp[TVx, TF TV x]
=M (1 -N""max {p[Tix, T*T"x]:i=0,1, ..., k—1}

which proves (c) and, hence, (b). The proof is complete.
Here we utilize the following interesting proposition of Adamovié:

Proposition 3 (Adamovi¢ [1)) If T is a mapping of a nonempty set X
into itself and, for some natural number n, the iterate T" possesses a unique
fixed point, then T has a unique fixed point, too.

Proof of Theorem 4. Let # and x in X be such that u=1im 7™ x.
Consider the sequence {I"x:n& N} which contains the sequence {T™x:i€n}
as a subsequence. Since T is a (generalized) f-contraction, it follows that the
sequence {T"x:n<N} must be Cauchy, as it was shown in the first part of
the proof of the theorems 1 and 2. Since {T”"x:n&N} is a Cauchy sequence
and contains a subsequence {T" x-.i&N} such that im T% x=u, it follows

that lim T"x=u. Then, from (15.1.) or (17.1) one has lim p [Tu, TT"x]—0, i.e.

n-—>00

Tu=lim T"+'x which implies Tu=1im T™+!x. This completes the proof.

i—>c0

Proof of Theorem 5. Continuity at £ of T implies that (7" +! x) converges
to T(§). Suppose £#T(§). We consider two open discs S,=S, (&, #) and
S,=8,(T (%), ) centered at £ and T (§), respectively, and of radius 7>0,
where n<<3-1p[§, T (§)]. Since (T™ x) converges to £ and (7" +'x) converges
to T'(§), there exists a positive integer N; such that i>N, implies T% xS,
and T"%+'xcS,. Hence,

(18) pIT™ x, T+ x]>n, (i>N,).
On the other hand, by condition (a), we have
eI+ x, T+ x)<f (o, p [T x, T"*'x), a,p[T" x, T"i+1x],

ayp [T +1x, T%+2x], o, [T x, T"+2x], ayp[T%+'x, T%+1x])
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For e>j>N, and applying now Lemma 1 we have
p[T"% x, T"* ' x]<Ac [0 (x, n,+ )]1=N6 [0 (x, n,+2)]< - - -
SN o [0 (x, n,+n)]<Ne=" (1 -2)"1p[x, Tx].

However, this last expression approaches 0 as e approaches oo, and we would
get a result contradicting (18). Hence T'(§)=&. Hence, £ is a fixed point of
T. If 8 is an element of X such that T (3)=3, then

r=p[g 8]=p[TE T8 =f(xpl& 81, 0,0, a,plE, 8], asplE, 8])
=f(eyr, ayr, agr, oyr, agr) = r=0.

Hence £=3 and the theorem is proved for f-contractions.

One can prove in the same manner the part of this proposition concerning
generalized f contractions.
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