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1. Introduction

Among the most popular tests of convergence of series of positive terms
are the simple ratio test and its refinements in their limit forms. It is there-
fore of some interest to observe that the existence of the limit in the test
criterion largely specifies the possible forms of the terms of the series.

Let 7 ={t,}o—1 be a sequence of positive numbers and set T = D < oo,
n=1

A general criterion for determining whether T< oo, or otherwise, is Kummer’s
test [9, p. 311], [11, p. 106]. One form of this states that if {c,} is a positive
term sequence with > c,”!= o0, then T<< oo (resp. =oo) if K, =c,t,/t, . —
—Cpi—>K>0 (resp. <0). If K=0 we cannot make a decision either way.
An interesting alternative form [4], [10] is that T'< oo iff there is a positive
term sequence {c,} such that lim (c,?,/t,,,—¢,.,)>0. It was essentially this

n—roo
form that was first given by Kummer [4, p. 38]. Kummer’s test includes the
limit forms of the well known tests such as the D’Alembert-Waring-Cauchy
ratio test [8, p. 465] (c,=1) and Raabe’s test (c,=n).

These latter tests can be taken as the first two of an infinite sequence of
tests. Indeed, let log, x=x, log,,,x=Ilog(log,x) (k=1,2,..), D_, (7, n)=
=1t,/ty.; and for k=0, 1, ..., and n sufficiently large,

Dy (I n)=(logyn) (Dy_, (I, m)—1).

If for some &, lim D, (J,n)>1 (resp.<1) then T<< oo (resp. T= ). The cases

k=—1,0, and 1 yield the ratio, Raabe’s and Bertrand’s tests, respectively.
If for some k, D, (7, n)—1 then a decision may be possible on the basis of
Dy (J, n) for some k'>k. Thus we have a sequence of increasingly fine tests
which may be applied to a given series.

In this paper we shall determine the classes of series for which these
tests are applicable. Specifically, we shall establish the nature of the sequence
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J for which lim Dy (7, n) exists as a finite number. This characterization is

n—roo

carried out using recent results from the theory of regularly varying func-
tions and sequences.

In §3 we prove the main result which shows (roughly) that in order
for D, (7, n)—>p (n—> ), t, must be asymptotically proportional to

$u=[Ay (n) (log, n)° M, (log, (n))] -1

k
where we write A_, (m)=1 and A, (m=T]] log;n(k=0, 1, ...) (arguments of

j=0
functions are always assumed sufficiently large for the functions to be well-
-defined) and M, (x) belongs to a special class of functions. This result is
closely related to the so called logarithmic scale which consists of those series
whose terms are of the form above with M, (x)=1. For each real o this
gives an indexed family of series which diverge or converge more slowly with
increasing k. The collection of these families provides a set of series which
are useful for comparison purposes. We refer the reader to [9, p. 278] for
accounts of this topic.

Our representation theorem provides estimates of the rate of conver-
gence or divergence of series amenable to ratio tests and also provides some
insight to generalisations of Gauss® test. These matters are discussed in §3.
See [10] for some related results.

2. Positive term series.

A positive measurable function R(x), 0<x< o, is said to be regularly
varying (at infinity) with index p, — o0 <p<< o or simply p-varying if lim R (A x)/
[R(x)=2¢ for A>0. If p=0, R(x) is called slowly varying (S.V.). A p-varying
function can be written in the form R(x)=x?L (x) where L(x)is S.V. A
positive measurable function g (x), 0<<x< o is said to be of moderate growth
M.G) if lim g(A+x)/g(x)=1 for each real A. This is equivalent to the

X—>0

requirement that g(logx) be S.V. Finally we say that g(x) is p-rapid if
g(logx) is p-varying and hence is of the form e?* L (e¥) where L(x) is S.V.
See [2], [5] and [6] for details.

Our first result characterises those series amenable to the D’Alembert-
-Waring-Cauchy test.

Theorem 1.
€))] lim D_, (T, n)=2

n—o0

exists and is finite and positive iff there is a p-rapidly varying function g(x),
such that t,=g(n). If (1) holds then

g(x)=A"*M (x)
where M (x) is of M.G.
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Proof. The direct part is obvious. To prove the converse, observe that
the hypothesis gives D_, (7, n)=A+¢c(n), where €(n)—0 and this yields

n -1
L=ty A" []—I (1+21le (m))] .
m=1
Denoting the product by P,, we-have

P,=exp 3 log(1+A"te(m))..

m=1

Consider the function v (x)= f log(1+A"te([1+y]))dy. A change of vari-
1

ables yields
¥y
n(logx)= [ y~*log (1 +A~'e ([1+]log y]) dy

so exp n(logx) is S.V., hence M (x)=expy(x) is of M. G. The theorem now
follows since P,=M (n) (1 +21=1e(1)).

A sequence {c(n)} of positive terms is called regularly varying if
lime(@nDic =4 (), 0<P )<
n—>rw

for each A>0. It can be shown that ¢ (A)=»° for some finite p and that
R(®)=c([x]) is p-varying. If p=0 we say the sequence is S.V. A slightly
earlier attempt [7] at defining the notion of a regularly varying sequence
eventually yielded the following theorem, which was the inspiration for the
present work.

Theorem 2. A sequence of positive numbers {c (n)} is p-varying iff there
is a sequence of positive numbers J={a(n)} such that c(n)/a(n)—1 and
D, (T, n)——p (n—>o0).

This result can be loosely interpreted by saying that Raabe’s test can
be applied to the series 1, iff {#,} is a regularly varying sequence.

We now turn our attention to the quantities D, (J, n) (k=>0). First
observe that if D,(J, n)—>p, then J is monotonically decreasing (resp. increa-
sing) if p>0 (resp. p<0). In particular if lim Dy (Y, n) is finite for k>1,

n—>

then D,(7, n)->1. Thus a convergence test involving the existence of
lim D, (J, n) (k>1) entails the monotonicity of the terms of the series. This

n—»o

remark generalises one made by Ney [10, p. 6]

We now consider the problem of characterising the sequences J = {t,}
such that {D, (J, n)} converges to a finite limit for some k>0. This requires
some preliminary results.

Lemma 1. log, (n+1)=logen+ (N, (M) 1 (1+0@m1).
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Proof. The proof is by induction on k. The lemma is’ clearly true
for k=1. Assuming it is true for &, we have )
log,, (n+1) =log [logy n+ (Ar_; (m) =1 (1 + 0 (n~1))]
=log {(logm) [1+ (Ax (m))~1 (140 (n~1)]}
=10ge;; n+ (A (M) (140 (n71) + 0 (A4 (n))~2).
Lemma 2. Let T,(n)=A, (n)/n. Then for k>1.

0 Te+D=T, (n)+n‘1[ S T1 login+1+40 (n-tlog,n- - -logk"ﬂ;

=215
(i1) Ap(n+1)=A,(n)+ Ek: ﬁ log;n+ 1+ 0 (T} (n)/nlog n);
and = .
(iii) A (n+ DA (n)=1+ > 1/A; (n)+ 0 (1/n*logn).
j=1

Proof. Assertion (i) implies (ii), which in turn implies (iii). Since
Teri(n+1)=logg,, (n+1) T, (n+ 1), (i) is obtained from Lemma 1 and induc-
tion on k.

Theorem 3. If k>0 and {D,(J, n)} converges to a finite limit, e
then t,=a(n) R(n) where R(x) is a regularly varying function of the form

R (x) =[Ay_, (x) (log, x)° L (x)]71,
L, (x) is S.V. and of the form

RIOW

Le@=exp [,
k

where 8 (x)—>0 (x—o0),  is such that the integrand is well defined and
lima(x) is finite and positive. Conversely if t, can be represented in this way,

X—>00

then 3t, converges and diverges with a series, Ys,, where Dy (&, n)—p,

y: {Sn}'

Proof. The case k=0 is just a restatement of Theorem 1 and the
remarks following it, and we take it as proven. The proof for the case
k=1 is an elaboration of some of the working in [7]. Expanding D, (T, n)
gives

D, (7, m)= Ay (Mtltyer— S T login=p+0(1)

j=0i=j
so that

k—1
tlturr =1+ 3 1/A; (n) + (o + 0 (1))/ Ay (n).
j=0
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Writing t,= (Ax_, (n) I, (n))~! and using Lemma 2 (iii) we obtain
I (n+ D)/l (n) = 140 (1/n* log n) + (o + 0 (1))/ A, (n)
=1+(p+em)/ A (n)

where &(n)—0 (n—> ). For n=N say, | 1—I, (n+ 1), (n)}| <1, so that, following
[7], we obtain

logl (M) —logl, W) =— 5 ' j=1 (1—k (m+ 1)/l (m))’

m=Nj=2
L pte(m)
m=N Ak (m)

However |1—1I (m+ 1)/, (m)/<(p+m~1e(m))/ so the argument in [7] shows
that the first sum at (2) converges as n—>co.

@ +

Consider

dn: i (Ak (m))‘l — Ing+1 n.

m=N

Then d,—d,_, = (A (m)~'—(logy, , n—log,., (n—1))

S )= [ (A () dr<0
n--1

nt1
and d,> [ (Ap(9)dx—loge,
N

=logy,, (n+ 1)—loge,, n—loge, | N> —~M> —

where we use Lemma 1 to obtain the penultimate inequality. Thus limd,

n—rw

exists. We finally have

LM =b)( o & _elm)
i (1) = b (n) (log; )° exp 2 Am)

where lim b (n) is finite and positive. The sum is interpolated by the expression
n—»oo
X

e(N/A, (N)+ fs([y+1])/Ak ([y+1])dy. However if N is large enough then
N

for y>N,A, )=y and Lemma 2 (ii) shows that A (1+»)—A, ()=

=0 (A, ()/y) and hence it follows that the difference of the integral above

and f e([y+1]/A, () dy converges as x— oo.
N

To prove the converse part, define s, by
8, =[Ag_y (n) (loge n)® Ly (m)]~*.
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Lemma 1, the expression for L,(x) and an integral mean value

theorem yield
s,,/s,,+1=A"“(n+1)(1+ d +o( ! ))
Ay (m) A () Agrr ()

Lemma 2 (iii) now gives

Dy (s )= A () (sn/sn+1 ~N (DA (M) +0 (ﬁogn—))
_w - —> 00
TThm FTOme e

3. Some Consequence of Theorem 3.

(i) Some convergence rates. The remarks preceding Theorem 3 show
that if lim D, (7 n) exists for some k>1, and is non-zero if k=0, then

n—oo

we could apply the integral test to the series >t,. We way use this to
deduce the rate of divergence or convergence of 2 t,. Suppose that p<1, so
that 31,= o and write A=lima(x) (0<A<oo). Then

n

> t,,,~AfR(y) dy.
m=1 4

where R (x) has the form given in Theorem 3.
Denoting the integral by I(n) we have

logy n

dy
I(n)= -
® f Y (y)

log g
where [, (x) =L (e (x)), € (x) being the inverse function of log, (x). It is

easily seen that e, (x) is defined for all real x and indeed, is defined by
€ (x)=x and e, (x) =exp (,_, (x)). This recursive expression yields

2 e -TTe®
— e, ()=TTe; (x).
dx k( 1=]:[1 J
Substituting y=e¢, (z) in the integral defining /, (x) gives
k
* 3 (e, (2) I1edz
j=1

. )
k() =exp f K (e @)

logg ¢
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k 3 K
But MA@ =T]logi (e N =[] &—;@=T]¢& @
j=0 j=0 =0
so finally
L@=exp [ 8 (e ())zdz
log ¢
which shows that /. (x) is S.V. Hence Theorem 1 of [1] yields

logg n
dy
= — = 10(1
o 6[ y"lk(J’)+ M

1

dz
=(logymt=® | ——————+0(1)
/

z° 1, (zlog, n)

(log, n)'—° _ (log; m)t—°
(1—p) I (logen)  (1—p) Ly (m)

Thus we finally obtain

n
S ty~d
m=1

Similarly, if p>1 we obtain

(log, m)t—°
(I—p) L (m)

5
men (p—1) (logyn)p=1 Ly (n)

for the rate of convergence of 3 f,.

n=1

(i) Gauss’ Test. If

©ok—-1
Lty =1+
n+1 _,Z:o Aj (n)

+0/Ag (1) +e (m)/ Ay ()

where & (n)—0 (n— o0) then it is clear that D, (J, n)—p. If p=1 and

¢ (n) = O[(logy, ) 1.
for some A>0, then

Dy (T, n)=0[A, (n) (log, m)*]
= 0[log (log, n)/(log; n)*]—>0
so that >, diverges. The case k=0 is Gauss’ test [9, p. 288].
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