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In [1, Theorem 2. p. 182] Birkhoff proved the following theorem utilizing
the axiom of choice:

Theorem. Let E be the universal semilattice of the partially ordered set P.
Then E fulfils the descending chain condition iff P does.

In the paper [2] this theorem is proved by utilizing the Tichonof’s
theorem. Here, we give a proof by utilizing the Koning’s lemma. Previously
we introduce some definitions and notions.

Let P be a partially ordered set. The lower end of P is any subset L
of P, for which p&L and q<p are fulfilled, then g& L. The family % (P)
of all lower ends of P i.e. of all finitely generated lower ends is a semilattice
with respect to the inclusion and the set theoretic union as a join.

Definition. E is a universal semilattice of P if for every semilattice F
and every isotone mapping f: P—F can be in a unique way lengthened to a
homomorphism ¢: E—F.

In the paper [3] was given the following assertion: E is a universal semi-
lattice of P if and only if every element x& E has a unique representation as
sup C (x), C(x) being a finite antichain C(x)CP.

So the semilattice _% (P) can be considered as an abstract extension E
of P[1,3].

2. For every x€E we have x=sup C(x) where C(x) is a finite anti-
chain from P.

Lemma. Let x, y—E. Then
x<y => (VpEC(x)) 39€C ) (P<9)-

Proof. Let us start from the contrary i.e.
x<y and (3pcC(x) (Vg=C(») (pF9)-
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Then we have two possibilities form that p from C(x):

(3 (V¢€C (1)) (p>9) and

(b) p is comparable to no g from C(y).

If (a) is fulfilled, then y=sup C(y)<{p, but as p<Csup C(x)=x<y<p
which is a contradiction.

If (b) is fulfilled, then because of p<<x<y, we have y=sup C(y) and
y=sup (C (»)U{p}) which gives a second representation for the element y.
Contradiction.

In that way the Lemma is proved.

Proof of theorem. As ECP, then, if E satisfies the condition of
descending chains, this feature has also P too (trivially). Contrarily let us prove
the following assertion:

If P satisfies the descending chain condition, so does E too.

Suppose the contrary, i.e. that P satisfies the descending chain condition
and E does not satisfy it. Then in E there should be a strongly descen-
ding chain

¢)) XX, >0 X,

where x;,CE (i=1,2,...). As x,=sup C(x;), we can assume for some sc-N
and every n=s () C(x)= 2.
k=n

Let us notice that the following set of formulas
(VP& C(x,.) (F9€C(x)) (p<9)

which are true on the basis of the proved lemma, because x;,,<<x; (i=1,2,...).
Then on the basis of lemma for each (sufficiently large) n there exists a finite
chain of elements from P

P1=Py= 2Dy PEC(x)CP, @(i=1,2,...,n).

As all sets C(x;) are finite, then also on the basis of Konig’s lemma [4]
exists the infinite sequence

(2) p1>p2> M >pn> R

of elements from P, where p,=C(x) (i=1,2,...).

Among all elements p;, in (2) there must be infinitely many different
ones and they would form an infinite descending chain in P, a contra-
dicton. As a matter of fact, if the set {p,},=~ were finite, then for some
s&N one would have p,=p  ,=---, thus() C(x)# @, contradicting the

. nz=s
assumption.

By this, the theorem is proved.
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