A THEOREM ON CONTRACTION MAPPINGS

S. A. Husain and V. M. Sehgal

(Received June 10, 1977)

Meir and Keeler [4] defined weakly uniformly strict contraction mappings and proved a generalization of a fixed point theorem of Boyd and Wong [1]. In this note, we shall prove a fixed point theorem for mappings similar in [4] and give an extension of a recent result of Daneš [3].

Let (X, d) be a metric space and T a mapping of X into itself. For an $x \in X$, let 0(x) denote the orbit of x, that is $0(x) = \{T^n x : n \in I \text{ (nonnegative integers)}, T^0 x = x\}$ and for a subset $A \subseteq X$, let $\delta(A)$ be the diameter of A and cl (A) the closure of A. Also, for $x, y \in X$, let

(1)
$$M(x, y) = \max \{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)\}.$$

Definition 1. The mapping $T: X \to X$ is a max-contraction on a subset S of X iff for each $\varepsilon > 0$ there exists a $\varepsilon_0 > \varepsilon$ and a $\delta_0 > 0$ such that

(2) if
$$x, y \in S$$
 and $M(x, y) \le \varepsilon + \delta_0$ then $d(Tx, Ty) \le \varepsilon_0$.

Theorem. Let $T: X \rightarrow X$. If for some $x \in X$,

- (i) $\delta(0(x)) < \infty$,
- (ii) cl(0(x)) is complete in X,
- (iii) T is a max-contraction on cl(0(x)).

Then T has a unique fixed point in cl(0(x)).

Proof. Let for each $n \in I$, $x_n = T^n x$ and $\delta_n = \delta(0(x_n))$. Since for each $m, n \in I$, $n \le m$, $0(x_m) \subseteq 0(x_n)$, it follows by (i that $\{\delta_n\}$ is a nonincreasing sequence of nonnegative reals and hence for some $\epsilon \ge 0$,

$$\delta_n \rightarrow \varepsilon.$$

We shall show that $\varepsilon=0$. Suppose $\varepsilon>0$. Then by (iii) there exists a ε_0 , and a $\delta_0>0$ satisfying (2) on cl (0(x)). Choose $N\in I$ such that $\delta_n\leq \varepsilon+\delta_0$ for all $n\geq N$. Now, if $m,n\in I$ and $m,n\geq N+1$, then since

$$\{x_{m-1}, x_{n-1}, Tx_{m-1}, Tx_{n-1}\}\subseteq 0 (x \ge),$$

it follows by (1) that

$$M(x_{m-1}, X_{N-1}) \leq \delta_N \leq \varepsilon + \delta_0.$$

Consequently by (2)

$$d(x_m, x_a) \leq \varepsilon_0 < \varepsilon$$

for all $m, n \ge N+1$ and hence $\delta_{N+1} \le \varepsilon_0 < \varepsilon$ contradicting the definition of ε . Thus $\varepsilon = 0$ and $\delta_n \to 0$. This implies that $\{T^n x\}$ is a Cauchy sequence. Therefore, by (ii) there exists a $u \in \operatorname{cl}(0(x))$ such that

$$(4) T^n x \to u.$$

We shall now show that u = Tu. Suppose

(5)
$$d(u, Tu) = \varepsilon > 0.$$

Choose ε_0 and $\delta_0 > 0$ satisfying (2) on $\operatorname{cl}(0(x))$. Also, choose a $N \in I$ such that $\delta_n \leq \delta_0$ for all $n \geq N$. Since for any $n \in N$,

$$d(x_n, Tu) \le d(x_n, u) + d(u, Tu)$$
, and $d(Tx_n, u) \le d(Tx_n, x_n) + d(x_n, u)$

and $\delta_n = \delta(\operatorname{cl}(0(x_n)))$, it follows that for any $n \ge N$,

$$M(x_n, u) = \max \{d(x_n, u), d(x_n T x_n), d(u, T u) d(x_n, T u), d(T x_n, u)\} \le \varepsilon + \delta_0$$

and consequently by (2)

$$d(Tx_n, Tu) \leq \varepsilon_0 < \varepsilon$$

for all $n \ge N$. Thus, it follows by (4) that $d(u, Tu) \le \varepsilon_0 < \varepsilon$. This contradicts (5). Thus Tu = u. Now, suppose there are $u, v \in cl(0(x))$ such that Tu = u and Tv = v. Then M(u, v) = M(Tu, Tv) = d(u, v) and hence by (2) u = v. Thus, u is the unique fixed point of T in cl(0(x)).

A mapping $\Phi: R^+ = [0, \infty) \to [0, \infty)$ is right continuous at $t \ge 0$ if $t_n \ge t$, $t_n \to t$ then $\Phi(t_n) \to \Phi(t)$.

Definition (Daneš [3]). Let $\Phi: R^+ \to R^+$ be a nondecreasing, right continuous mapping and $T: X \to X$ be a mapping. T is called a Φ -max-contraction iff for all $x, y \in X$, $d(Tx, Ty) \leq \Phi(M(x, y))$.

The following result due to Daneš [3] is a special case of the above theorem.

Corollary. Let $T: X \to X$ be a Φ -max-contraction. If for some $x \in X$,

- (a) $\delta(0(x)) < \infty$
- (b) cl(0(x)) is complete,

Then T has a unique fixed point in X.

Proof. It suffices to show that T is a max-contraction on X. Let $\varepsilon > 0$. Since $\Phi(\varepsilon) < \varepsilon$, choose any ε_0 such that $\Phi(\varepsilon) \le \varepsilon_0 < \varepsilon$. Now, Φ being right continuous, therefore, there exists a $\delta_0 > 0$ such that $\Phi(t) \le \varepsilon_0$ for all $t \in [\varepsilon, \varepsilon + \delta_0]$. We consider two cases. Case I. If $\varepsilon \le M(x, y) < \varepsilon + \delta_0$, then since T is a Φ -max-contraction, therefore, $d(Tx, Ty) \le \Phi(M(x, y)) \le \varepsilon_0$. Case II. If $M(x, y) \le \varepsilon$ then since Φ is nondecreasing, $\Phi(M(x, y)) \le \Phi(\varepsilon) \le \varepsilon_0$. In either case, the pair ε_0 , $\delta_0 > 0$ satisfy (2) on X.

It may be pointed out that a recent result of Ciric [2] is a special case

of Daneš [3] and consequently of our above theorem.

REFERENCES

- [1] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464.
- [2] Lj. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267—273.
- [3] Josef Daneš, Two fixed point theorem in topological and metric spaces, Bull. Austral. Math. Soc., vol 14 (1976), 161-320.
- [4] A. Meir, and E. Keeler, A Theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.

Department of Mathematics University of Wyoming Laramie, Wyoming 82071 U. S. A.