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We shall consider only finite, undirected graphs without loops or
multiple lines, or shortly, according to Harary [1], only graphs. For arbitrary
graph G, G denotes a complement of G, L(G) denotes a line graph of G
and G” denotes an n-th power graph of G, i.e. G* is the graph having the
same vertex set as G and in which two (different) vertices are adjacent if
the distance between corresponding vertices in G is at most n. For all basic
definitions and notations the reader is referred to [1], and for notion. of
graph equations, see for example, [2] or [3].

In this paper we shall solve the following three graph equations

(1) L(G)=G",
) ' L(G)=G" (or L(G)=G"),
A3) ’ 4 L (G)=(G)".

In the above expressions, the equality sign means the isomorphism
between corresponding graphs. :

Note, that for n=1, the equation (1) is reduced to the wellknown
result of V. V. Menon [4], while the equations (2) and (3) are reduced to the
equation which is solved by M. Aigner [5]. So we shall assume that n>2.

Equation L(G)=G"

Theorem 1. For any n>2, the solutions to the equation L (G)=G" are
graphs G=m K, where m is an arbitrary positive integer.

Proof. Let ¢(H) denote the number of vertices in the largest clique
of a graph H. Then the following relations can be checked:

AG) A@G)>30r AGKI

() c(L(G) =43 A(G)=2and K,CG,
2 A@G)=2 and K,CG
(b C e (G)>A@G)+1,

* The results of this paper were obtained approximately at the same time by all three
authors and accordingly, a joint paper is made.
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where A denotes the maximal vertex degree of a graph and C denotes the
relation “to be an induced subgraph of”. Namely, the relation (a) follows
directly from Whitney’s theorem for line graphs, while (b) is obvious.

Now on the basis of direct comparison of graph invariants (¢ (L (G)) = ¢ (G")
we arrive to the proof of theorem.

Equation L (G)=G™"

Theorem 2. For n>2, G=C,,,, is the only solution to the equation
L(G)=G" ‘ '

Proof. Suppose G=(UG)UmK,, where G, is nontrivial and connected
iel

for each i< and m>0. By substituting the last expression in (2) we get

[I|=1, since otherwise L(G)is connected and G” disconnected. So G=G,UmK,
and let us take m=#0. If G, =K, it is easy to see that (2) does not hold. If
G, has more than one line then K, UK, CG", but since K, ;L L(G) we get a

contradiction. Hence, G must be connected and due to the fact that L(G)
and G" have the same number of vertices G is a unicyclic graph.

, Now we can prove the following two properties for a graph G:
() r(G)>n

(d) no four vertices vy, ¥;s ¥ Ve of G satisfy the relations

d, v)y>n+1 (s=i,j, k) and d(v, v)<n (s, t=1, Jj, k);

where r denotes the radius of a graph and d(u, v) denotes the distance between
corresponding vertices of some graph. The property (c) follows from the
connectedness condition. Namely, if r(G)<{n then there exists at least one
vertex in G" which is adjacent to all other vertices. But then, we have that
G" is disconnected while L (G) is connected. So (c) holds. In order to prove
(d) it is sufficient to observe that K, , is forbidden as an induced subgraph
in line graphs. So (d) also holds. ,
By using (c) and (d), under the supposition that G is different from a
cycle, we can prove the following additional condition for G:
(¢) if G is not a cycle, then G contains as an induced subgraph a graph
from Fig. 1, where u, (,) is at the maximal distance from the nearest
vertex v, (v,) of the cycle and also the following relations d (4, v,)=

=d (U, v,)=n+1— [—;—g (G)] and d(v,, v,) = [% ‘g‘(G)] (g denotes the
girth of a graph) hold. '

v2 ) uz
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For proving (e), suppose that u, is a vertex outside the cycle which is
on the maximal distance from the nearest vertex v, of the cycle. We  shall

first show that d(u,, vl)<n+1—[—— (G)] Suppose contrary. ‘Then we can

take u,- and three consequtive vertices of the cycle, say w,, W Wi, for Wthh
d(w;, wp<n (i, j=1, 2, 3) obviously hold and also for each i d(u;, w)>n+1
since d( (u,, w,-)=d (uy, v,)+d(v;, w;) and because we can choose w,, w,, w, such

that d(v,, w))> [%g(G)]— 1(i=1, 2, 3) holds. But the last is ‘in the contra-

diction with (d). As a consequence of the above just proved inequality we
have g(G)<2n+ 1. Now by using (c) it follows that in G there exists a vertex
u, such that d(v,, u,)>n. Since g(G)<2n+1 u, is outside the cycle and a
vertex v, of the cycle such that d(u,, v,) is minimal is different from v,. Hence,
we have just proved the existence of the graph from Fig. 1 in G. Now, since
n+1<d Wy, v)=dWu,, v,) +d(v,, v,), we have n+1—-d@v,, v,)<d W, v)<n+1

- [—:12— g (G)] and since d(v;, v,)<< {% g (G)] it follows that d(u,, v)=n+1—

—[—1— g(@) ] and d (vl, v2)=[ig(G):|. On the basis of reciprocity d(u,, vl’)\=
=d(u,, v,) and so (e) is proved.
Now.assume that G is not a cycle and that #n+1— % g(G) > 2 holds.

In this case it is easy to see that (d) and (¢) contradicts. To see this observe,
for example, u;, u,, v, and any vertex of the (unique) path between u, and v,

(note d (u,, v,)>2). Thus we have [Eg(G)}—n, i.e. g(G)=2n+1 or g(®)=

=2n. For g(G)=2n+1, taking u,, u,, v, and one of the vertices of cycle
which is adjacent to v, we get the same contradiction as above. Suppose now
g2(G)=2n. Due to (c) each vertex of the cycle must have at least one pendant
line, while due to (d) each vertex of the cycle could have at most one pendant
line (both facts can be easily verificated). So we have G=C,,°K,. But the

last graph is not a solution since L(G) and G” have not the same degree
sequences.

At last assume that G is. a cycle say G'=C, for some k Now L(G)
is a regular graph of degree k—3 while G* is a regular graph of degree 2n
for 2n+ 1<k or a complete graph with k vertices for 2n+1>k. The only
possibility for existing a solution is the case when k=2n+3. It can be eas1ly
shown that C,,,, is a solution and this proves the theorem. e

Equation L (G) = (G)".

Theorem 3. The equation L(G)=(G)" has no solution for any n>2.

Proof. Suppose again that G=(lJ G)UmK, where G, is nontrivial

icl
and connected for each i€l and m>0. If m+#0, (G)" is a complete graph,
while L (G) is complete only for |I|=1 and for G, being a star or a triangle:
But then, L(G) and (G)* are different since they have not the same ‘number
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of vertices. If m=0, we immediately get | 7|=1 and hence G must be connected.
Since L (G) and (G)" have the same number of vertices G is unicyclic.

For G being unicyclic we shall prove that (G)” is nearly always a com-
plete graph. Suppose first that # and v are nonadjacent vertices in G. Then
they are adjacent in (G)”. The other possibility is that » and v are adjacent
in G. If in G exists a vertex w nonadjacent to » and v then u and v are
adjacent in (G)". So (G)" is always complete except for the case when in G
exists a pair of adjacent vertices such that each of the remaining vertices is
adjacent to at least one of them. But then G is a triangle such that only two
of its vertices could have pendant lines or is a quadrangle such that only
two of its adjacent vertices could have pendant lines. It is easy to see that
C, and C, are not solutions. If only one vertex of the triangle has pendant

lines then (G)" is disconnected while L (G) is not. If just two vertices of the

triangle have pendant lines then (G)” is a complete graph or for n=2 it
contains K;—x as an induced subgraph. Since L (G) is complete only for G
being a star or a triangle (isolated vertices are ignored) and since K ,—x is
one of the Beineke’s forbidden graphs for line graphs we have no solutions.
If G can be obtained from a quadrangle by adding pendant lines to at most
two adjacent vertices then (G) is a complete graph or for n=2 and* G+ C, K,
it contains K,—x as an induced subgraph. All above possibilities: do not give
any solution. Since C,-K, is not a solution the theorem is proved.
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