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1. Introduction

In the first part [4] we constructed a theory which gave the approximate
solutions of the linear differential equation
(1) > a(s)xP () =0, <AL,
k=0

in the field of Mikusifski operators; where
dk
2) a ()= ox,y 8’ d<m, k=0, 1,..., n,
v=0
s is the differential operator.
In this second part we shall give the numerical side of the mentioned
theory especially when we apply it to partial differential equations using a com-
puter; at the end we shall illustrate it on a concrete example.

2. Character of the methode

To the partial differential equation with constant coefficients

z & A, <AL,
O > D Uy Xk, (A ) =e(A, 1) 1 2
k=0, v=g) 0<1< 00,

corresponds, in the field of Mikusinski, the differential equation

4) S () X® ) =f ()

k=0

where a; (s) are given by (2).
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The characteristics of our results are:

— The construction of a unique program for a computer to realize the
approximation of the linearly independent solutions of the equation (1) in
the interval [0, T]. These solutions are used to construct the solutions of the
equation (3) restricted with some conditions (initial, boundary, ...); they have
not to be solutions of the equations (3) in classical sense.

— All the approximations are given by a unique class of functions —
— Wright’s functions.

— The upper bound for the measure of the approximation and in case
of a function also the error is given and a program to calculate this bound
by a computer.

— For the Wright’s function we know an approximation by polyno-
mials and the error for such an approximation.

3. Calculation of the approximate solutions

We have seen that the linearly independent solutions of the equations (1)
are of the form

(5 x()=Ne", i=0, 1,..., k—1

where w is a k-tiple zero of the polynomial equation

n d
(6) F(l, =3 5 o, Im v wk=0, di<m, k=0, 1,..., n
k=0 v=0

and they have the form

(7) w=I-ar > g, liP, g=0 if d,=0.
0

iz

We know that the value of g/p and a, predetermine the existence of
the solution (5). The values for g/p can be determined from the inequalities:

(8) d+Lica+Lj>d+Lk k=0,1,...,n.
g
P » P

If a,(s)=0 for one of the value k=k;, then we take as dy, the value —I1.

All the numbers ¢ and p for which ¢/p has different values, we count
up by the subprogram QIP and NZB (see the schedule which follows).

The corresponding coefficient a, can be found as a nonzero solution of
the equation

, ) X
9 Q (a)=0oi,q; o+ %, gj A0+ Xk, d, G0' + - - - +
+ Gtky, diy ad =0

where k,, ..., k; are these values of k in (8) for which we have equality.
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Let d; be chosen in such a way that d;,—d,=>0, k=i, j, ky, ..., k;
using the relation (8) we can transform the equation (9) to:

(10) o, g+ %ia (@D ok, ae, (@) R

d;—dj
+ ok dey (@§l)T% =0,

Now, the coefficient g, can be counted up by a subprogram ANULA
using also a subprogram ROOT in which by the method Lin-Bairstow we
find all the solutions of the equation (9) or (10). In the following we use
one value for g, but real.

Let us suppose that we fixed a g/p and a real gq,. In the polynomial
F(/, w) (see relation (6)) we introduce new variables: w=1/7w and wu=I"?
so that

n 4
F(l, )=P(u, 0)=73 > oy, upm ry-ok ok,
k=0 v=0
P(u, ) can be written in the form
n [13 1
(11) P, 0)=3 3 P ok (0, a) 0 (0—a)"

k=0 v=0 k! !

where p=maxp{m—v)—gqgk}, k=0, 1,..., n; v=0, 1, ..., d;.

It is easy to see that Py o (0, a)) =0 (a,) =0 and Py, (0, a)) =0’ (a,).
We can suppose that Q' (a,)0 because our supposition is that the polyno-
mial F (I, w) is irreducible.

Let us denote by

—-P, 0, a)
A, = LM
(12) VETT VR Q' (ap)

A, can be counted up by the programs PARCIZ and POLIZ.

From the equation .P (4, ©)=0 we have

(13) ©—8=5 S Ay, w0 (©—a)

k=0 v=0
where A, ,=4,,=0.

Taking ©—a,=_, a;u' and (Z a; u")k =3 Bixi,
=1 i=1 S

i-1
Bii=ai i21, Bix= 3 G mBmi1s izk,
m=k—1

we have

(14) S au=3 5 Ay g

izl k=0 v=0
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Let us denote by
Py )
Yi k= Z Ak Bi—t,k> Pre=min(u, j— k), N=min (j, n),
i=0

<<
H={1, j\p'}’

0, j>u
we have
N -
(15) a=HA;,+ > Y0 J=1,2,...
k=1
In special cases:
ay=4,,,
for n=1
Py
(16) aj=H' Aj,0+2Ai,1 aj__i, j>2
i=1
for n>2
P N P
(17 a;=H-A; o +> Ai,y i+ > > Aiy Boiw 722
i=1 k=2 i=0

The needed calculations are given by the following schedule:
. m=max{d;};
. q and p; subprograms QIP and NZB;
. One chooses a fixed value for ¢ and p;
. a,; subprograms ANULA and ROOT;

. Q' (a,); subprogram POLIZ;
. w=max{p(m—v)—qk}, k=0, 1,..., n v=0, 1,..., di;
. Ay, ; subprograms POLIZ, PARCIZ, FACT;

1
2
3
4
5. One chooses only one nonzero and real value for a,;
6
7
8
9. a;, i=1, 2,...; subprogram COEF.

4. Measure of the approximation

Let us suppose that we have computed the first i, coefficients a;. As the
approximate solution of equation (1) we take

(18) )~c(7\)=exp ()\ % ail(i—q)/p)=

i=0

q

)
= eXp ()\ . z a; I("—KI)IP) exp ()\ v Z a; I(i—q)/p) .
i=0

i= i=g+1
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About the character of this approximate solution and how it can be
expressed by Wright’s functions see part I, 2. 3.

The difference from the exact solution x () is:
x(N)—x () =x() (exp (x. S a,.;a—qw) _1) ,
iZig+1
The expression

(19) eXp()\- S ail(i—Q)/P)_I

i>ig+1

gives the measure of the approximation. (We suppose that i,+ 1>g so that
it is a function from L.)

We know how to find M and r in such a way that |a;|<Mr! (part I 3.).
With these notations we have:

(20)

exp (7\- > a,-l("‘q)/l’)—l

izig+1

<{t71® (0, 3, vd)}
T
where 8= (i,—q+ 1)/p and (see part I, 4.2 and 4.3)

1) > Myt s 27
v Mrio .
=0 T'(p+1)

4.1. A bound for the parameter

To find a bound for v we can use the inequality I' (x) >} 2w, x*e *x!/2,
x>0, [2] and in this case

(22) v = Mrprio \/Z joil o/ +wo 1 JGo—a)lp
R = - ’

where = (eTp/j,)'/? r; j, is chosen in such a way
that w<<l1.

An other bound for v we can realize if we start

from the relation / \
1 1
23 =———o | e“u"?du \ J
23) 'z 2=i
C

where C is given by the fig. 1.
We have for v fig. 1.

(24) v=Mrit1 TUpr [ e* 1. & , | rTH? | <ulle,
u  ulP—(rTP)
c
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4.2. An upper bound for the function t=*® (0, 3; v1%)

The relation (20) says that the measure of the approximation is given
by the function t~'® (0, 3; ¢%). To have an upper bound of this function we
can use the integral expression

Ti u

1 vid
(25) 100, & v)=—— [ exp (,, N _8) du
where C is given by the fig. 1, or the Taylor-series for the function
© k
(26) 100, 8 vy =t1'S O£

S T+ (k)
We shall decide on the relation (26);

18-

e s ”“)}={P (;)vl"(b‘) > eyt

1 T+ 1) T (k9)
(v T?*

@D = TvF(S),Zo T+ 1) ((k+1)3) g
<g O 8

where

28) Q=) 5 —— O T

EoT (k+2) T [(k+1)8]

It remains to find a bound for Qs ,; we have to distinguish three cases:

1. 0<3<1. We know that the function I'(x) is positive for x>0 and
it has a minimum 0.88560... in the point x=1,46163... For this reason

y['@) = (vT¥F
0,88 ;go FE+1)

Qs <

(29)

vI' ()
< — T9).
0,88 exp (v T°)

3

2. 8>1. In this case T(kd®)>T' (), k=1, 2, ... because k3>3, I'(1)=
=I'(2)=1 and I'(x) is monotone increasing for x>1,46163... Now

O T%

30 Qs,y<v S =vexp(vT?).
9 WSV 2 Tk D
3. 8>3/2. For this case we shall use the following relation [5]:
1 \k-1 k-1
31 T k®)=|—— kk8—~1/2 IN 8+rk
@1 (k%) (Vzn) T[T @+r0
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from which we have:
(32) (k8> k~12 T*(3).

o (\, T&)k (k+ 1)1/2
<@
Now GO 2 G DT ke TR )

<y ) (VTS)k 1
T S\L®) Tk+1)

At last we can give a bound of the error if the approximate solution
x(») is a function:
i:i
x(x)—i(x)KTli(mlexp(x- S a4l ? )—1\

i2i0+l

i—a
exp(?\ . i al” )
i<o

i—q

ﬁ ’I+{t“¢)(0,tq—; a,-+7)]

i=g+1] p

Sr

; 1 fo—qtl
{,—1(1)(0,’0__Zf_; vt P )H
p

2 i~q
exp ()\ -Sal’
i=0

ipo—g+1
14
X Qio—q+1 v /
5o

A bound of the first part of this product is given in I 4. proposition A.

X

" i—q
<7 I-l—Qi_q 17

—, Aai
> i

X

i=g+1

5. Application to a special operator

In [1] L. Berg applies his method of finding an approximate inversion
of the Laplace transform to the function

F(p)=exp(—Vp+a+b—b(cp+b)Y)

a, b>0 ¢>1 which appears by finding of the dispersion’s coefficients [3].
We shall apply our theory to the corresponding operator in:

34) F(s)=exp — (/s +d—b* (cs+ b))
b>0, ¢>1, d>b, s-differential operator.
F(s) is of the form (5) where A=1 and w satisfies the equation

(es+b)yw?—((s+d)(es+b)—bH)=0

or
(c+bl) Iw? — ((I+dI) (c+bl) — B> 1) = 0

6.
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which corresponds to the equation (6). The last equation can be written in

the form:
P(l, o)y=(c+bl)e?—(({ +d)(c+b)—-b*1%)=0

1
where =112 and we see that -2~ — and for a, we have P (0, a0)=a§= 1,

p
whence a,= 4+ 1. The function F(s) shows that we have to take g,= — 1.
Our w is of the form
(35) w=I1-12% a,l a,=—1 or 0=, a;l’.
i=0 i=0

To find the coefficients a;, i=>1 we have
o+ 1=51—|:bl(m+1)2+(b2-db)lz—2bl(co+1)+c(o)+l)2—dcl]
c

which corresponds to equation (13). Now

d d>  b?
a= ———, a2=_—+'—a
2 8 2¢
1 i—1
ai=— % a(ba_,_r+ca;_i)—bai_,, i=3.
2 ¢ k=1

To determine M and p (see I 4.) we have S1=[zo=:bi], S, =8;=

={21,2= (Cd+b)2:':(d[§c:_db2)l)) e . So p<min{|z|, |z, |2|} and M,=
_ el +]ecd+blp+|db—b|p?
llel-|b]e|

For the other two parameters v and p we have

i—2
Z a;li-12 <T11/2[ Z ‘ai’ t }

i=ig+1 izl Gi—2)!
<r—eTfp Ittt
pl0+1
whence
v= & eT/p and 3=i,+1/2.

plot1

One approximation of our function F(s) is:

= Vs ] i—1/2
x=e " exp (> a4l

i=1

X={1®(0, —1/2, —t-1?)} ﬁ[([+{t“®(0, i—1/2; a;#-112)}],
i=1
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We know that

whence:

[t~ D0, —1/2; —t“”2)|<3—l/l/§—e—3/2, =0
K

[ F(s)-

~ _ 3)6 ) ,
x|<T—ly?e’3/21n(I+Qi_1,2,ai I-12y %
i=1

X Qigr1y2, v [oH+12,

For the special case b=1, ¢=2, d=2, i;=30 we obtained:

M=1,6756229 and p=0,4384379,

-~

a;

——
—OWR-TAAWUNPAWN-

[ R e N
SOOI WN

ISE SR SRS SES]
AN W —

W R RN
SO0

—.1000000 E
7500000 E
—.8750000 E
1218750 E
—.1906250 E
3218750 E
—.5722656 E
1055127 F
—.1998486 E
3864636 E
—.7597809 E
513983 F
—.3050873 E
6206497 E
—.1272915 E
2629128 E
—.5463891 E
1141710 E
—.2397240 E
5055314 E
—.1070232 E
2273742 FE
—.4846165 E
1035925 E
—.2220371 E
4770868 E
—.1027452 E
2217400 E
—.4794906 E
1038749 E

T | | F(s)—x|
o1 1| .3740859E 00
00 2| .8288866 E—01
00 31 .9763155 E—02
ol 4 | 7982501 E—03
ol 5| .5058944 E—04
o1 125 | 6| 2622452 E—05
o1 7| .1150262 E—06
02 8 | .4372575 E—08
02 9 | .1466628 E—09
02 10 | .4401477 E—11
02 11| .1195119 E—12
03 12 | .2962890 E—14
03
8431 1| .2853854E o0l
o0 2| 1664468 E 01
o4 3| 4604768 E 00
Py 4| 7854897 E—01
o2 5| .1002882 E—01
o 250 | 6| .1040727 E—02
P 71 .9130588 E—04
oc 8 | .6941813 E—05
oc 9 | .4656787 E—06
i 10 | .2795083 E—07
. 11 | .1517879 E—08
o 12 | 7526121 E—10
08
08 1] .1439097E 05
08 21 3212855E 05
09 3| .3878998 E 05
4| 2127287E 05
5| 6519686 E 04
500 | 6| .1421877E 04
7| 2521281 E 03
8 | .3840903 E 02
9 | 5154650 E 01
10 | 6188052 E 00
11| .6720921 E—01
12 | .6664889 E—02

85
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The first 30 coefficients a; are computed and given in the first scheme.

In the second scheme one can find the estimation of the difference | F(s)— x| for
three values of T and twelve of i,.
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