A FIXED POINT THEOREM FOR MAPPINGS WITH A SEQUENTIALLY COMPACT ITERATION IN PROBABILISTIC LOCALLY CONVEX SPACES

O. Hadžić

(Received February 16, 1977)

In [2] a fixed point theorem for mapping $T: (S, \mathcal{F}, t) \to (S, \mathcal{F}, t)$ was proved, where (S, \mathcal{F}, t) is a sequentially complete Hausdorff probabilistic locally convex space, t is a continuous t-norm [5] and, for every $i \in I$, the mapping T satisfies the following inequality:

(1)
$$F_{Tx-Ty}^{i}(q(i)\varepsilon) \geqslant F_{x-y}^{f(i)}(\varepsilon)$$
, for every $(x, y, \varepsilon) \in S^{2} \times R^{+}$ where, for every $i \in I$:

$$(2) \qquad \qquad \overline{\lim} \ q(f^n(i)) < 1$$

In this paper we shall prove a fixed point theorem for mapping $T: M \to M$ $(M \subset S)$ where $T^{n_0}M$ is sequentially compact subset of S in the (ε, λ) -topology and:

$$\lim_{n \to \infty} q(f^n(i)) = 1$$

If f(i)=i, for every $i \in I$ the relation (3) means that the mapping T is a non-expansive mapping and there are many fixed point theorems for such class of mappings if S is locally convex space ([1], [3], [4]).

In [3] the set $T^{n_0}M$ is compact, in [4] \mathcal{L} -densifying and in [1] Ψ -densifying.

Definition Let S be a linear space over real or complex field K and for every i in the index set I is defined the function $\mathcal{F}^i: S \rightarrow \Delta^+$ (see [5]) with the following properties $(\mathcal{F}^i(x))$ is denoted by F_x^i

1.
$$F_o^i = H$$
, for every $i \in I$, where $H(x) = \begin{cases} 0 & x \leq 0 \\ 1 & x > 0 \end{cases}$

- 2. $F_{\mu x}^{i}$ (ϵ) = $F_{x}^{i} \left(\frac{\epsilon}{|\mu|} \right)$, for every $\mu \in K$, $\mu \neq 0$, every $x \in S$, every $\epsilon > 0$, and every $i \in I$.
- 3. $F_{x+y}^{i}(\varepsilon_{1}+\varepsilon_{2})\geqslant t(F_{x}^{i}(\varepsilon_{1}), F_{y}^{i}(\varepsilon_{2}))$ for every $x, y\in S$, every $\varepsilon_{1}, \varepsilon_{2}>0$ and every $i\in I$ where $t:[0, 1]\times[0, 1]\to[0, 1]$ is t-norm [5].

Then (S, \mathcal{F}, t) is a probabilistic locally convex space.

The topology in S is introduced by the neighbourhood system of 0, $\mathcal{N} = \{N^i(\varepsilon, \lambda)\}_{(i, \varepsilon, \lambda) \in I \times R^+ \times (0, 1)}$ where the set $N^i(\varepsilon, \lambda)$ is of the form:

$$N^{i}(\varepsilon, \lambda) = \{x \mid x \in S, F_{x}^{i}(\varepsilon) > 1 - \lambda\}$$

and in this topology S becomes a linear topological space if t is a continuous t-norm.

Further if $\{F_x^i = H, \text{ for every } i \in I\} \Leftrightarrow \{x = 0\} \text{ then } S \text{ is Hausdorff.}$

Theorem 1 [2] Let (S, \mathcal{F}, t) be a sequentially complete Hausdorff probabilistic locally convex space, where t be a continuous t-norm, and T be a mapping from S into S such that the inequalities (1) and (2) hold and that the following condition is satisfied:

For every $(i, \lambda) \in Ix$ (0, 1) there exist $\varepsilon_{i, \lambda} \in R^+$ and $N_{i, \lambda} \in N$ such that for every $j \in \{f^s(i): s > N_{i, \lambda}\} G^j_{x_0}(\varepsilon_{i, \lambda}) > 1 - \lambda$ where:

$$G_{x_0}^i(\varepsilon) = \inf_{n \in \mathcal{N}} \{F_{x_n - x_0}^i(\varepsilon)\}, \quad i \in I, \quad \varepsilon > 0, \quad x_n = Tx_{n-1}, \quad n \in \mathbb{N}$$

Then there exists one and only one element $x \in S$ such that:

- (i) x = Tx
- (ii) $\lim_{\varepsilon \to \infty} F_{x-x_0}^{fs(i)}(\varepsilon) = 1$ for every $i \in I$, uniformly with respect to $s \in N$.

For example, if $t = \min$ and there exists $x_0 \in S$ such that for every $i \in I$, $\lim_{\epsilon \to \infty} F_{Tx_0-x_0}^{fn(i)}(\epsilon) = 1$, uniformly with respect to $n \in N$, and (1) and (2) hold, all the conditions of Theorem 1 are satisfied.

Theorem 2 Let (S, \mathcal{F}, t) be a sequentially complete Hausdorff probabilistic locally convex space where t is a continuous t-norm, M be a closed and star convex subset of S such that $\sup_{\varepsilon \in X, \ y \in M} \inf_{x \in X} F_{x-y}^i(\varepsilon) = 1$, for every $i \in I$, T be a mapping from M into M such that (1) and (3) hold and that the following conditions are satisfied:

- 1. For every $i \in I$ there exist $g(i) \in I$ and $\Psi_i : R^+ \rightarrow R^+$ such that:
- a) $\lim_{\epsilon \to \infty} \Psi_i(\epsilon) = \infty$
- b) $F_x^{fn(i)}(\varepsilon) \ge F_x^{g(i)}(\Psi_i(\varepsilon))$ for every $\varepsilon > 0$, $x \in S$, $n \in N$
- 2. $\overline{T^{n_0}M}$ is sequentially compact in (ε, λ) -topology. Then Fix $(T) = \{x \mid x \in M, x = Tx\} \neq \emptyset$

Proof: As in [1] let $\{\lambda_n\}_{n\in N}$ be a sequence of real numbers from the interval (0, 1) and $\lim_{n\to\infty} \lambda_n = 1$. For every $n\in N$ we shall define the mapping $T_n: M\to M$ in the following way:

$$T_n x = \lambda_n Tx + (1 - \lambda_n) x_0$$

where x_0 is a star point from M. Since M is star convex it follows that $T_n M \subseteq M$, for every $n \in \mathbb{N}$. Further if $Q_n(i) = \lambda_n q(i)$, then for every $i \in I$, $\varepsilon > 0$, $(x, y) \in M^2$ we have:

$$F_{T_{n}x-T_{n}y}^{i}\left(\varepsilon\right) = F_{\lambda_{n}Tx-\lambda_{n}Ty}^{i}\left(\varepsilon\right) = F_{Tx-Ty}^{i}\left(\frac{\varepsilon}{\lambda_{n}}\right) \geqslant F_{x-y}^{f(i)}\left(\frac{\varepsilon}{q(i)\lambda_{n}}\right) = F_{x-y}^{f(i)}\left(\frac{\varepsilon}{Q_{n}(i)}\right)$$

and so $\overline{\lim}_{m\to\infty} Q_n(f^m(i)) = \lambda_n \overline{\lim}_{m\to\infty} q(f^m(i)) = \lambda_n < 1$. Now, we shall prove that for every $n \in \mathbb{N}$ the mapping T_n satisfies the last condition of Theorem 1. We have from the condition 1. of the Theorem:

$$G_{x_0,n}^{fr(i)}(\varepsilon) = \inf_{m \in \mathbb{N}} \left\{ F_{T_n^{m} x_0 - x_0}^{fr(i)}(\varepsilon) \right\} \geqslant \inf_{m \in \mathbb{N}} \left\{ F_{T_n^{m} x_0 - x_0}^{g(i)}(\Psi_i(\varepsilon)) \right\} \geqslant \inf_{x, y \in M} F_{x-y}^{g(i)}(\Psi_i(\varepsilon)).$$

From the condition $\sup_{\varepsilon} \inf_{x, y \in M} F_{x-y}^{i}(\varepsilon) = 1$ and $\lim_{\varepsilon \to \infty} \Psi_{i}(\varepsilon) = \infty$ it follows that the condition: $G_{x_{0,n}}^{j}(\varepsilon_{i,\lambda}) > 1 - \lambda$, for every $j \in \{f^{s}(i) : s \in N\}$ is satisfied and that there exists one and only one element $x_{n} \in M$ such that:

$$x_n = T_n x_n = \lambda_n T x_n + (1 - \lambda_n) x_0$$

Now, we shall prove that from the condition $\sup_{\varepsilon} \inf_{x, y \in M} F_{x-y}^{i}(\varepsilon) = 1$ it follows that M is bounded in (ε, λ) topology.

Let V be a neighborhood of zero of the form:

$$V(i, \epsilon, \lambda) = \{x \mid x \in S, F_x^i(\epsilon) > 1 - \lambda\}$$

If there exists $\mu > 0$ such that:

$$\mu M \subset V$$

then M is bounded in (ε, λ) -topology. The relation (4) means that:

(5)
$$F_{ux}^{i}(\varepsilon) > 1 - \lambda$$
, for every $x \in M$

First, we shall prove that $\sup_{\varepsilon} \inf_{x \in M} F_x^i(\varepsilon) = 1$ for every $i \in I$. Namely, we have:

$$F_x^i(\varepsilon) \geqslant t\left(F_{x-x_0}^i\left(\frac{\varepsilon}{2}\right), F_{x_0}^i\left(\frac{\varepsilon}{2}\right)\right)$$

and so:

$$\inf_{x \in M} F_x^i(\varepsilon) \geqslant t \left(\inf_{x \in M} F_{x-x_0}^i \left(\frac{\varepsilon}{2} \right), \ F_{x_0}^i \left(\frac{\varepsilon}{2} \right) \right)$$

and since t is continuous we obtain:

$$\sup_{\varepsilon} \inf_{x \in M} F_{x}^{i}(\varepsilon) \geqslant t \left(\sup_{\varepsilon} \inf_{x \in M} F_{x-x_{0}}^{i} \left(\frac{\varepsilon}{2} \right), \sup_{\varepsilon} F_{x_{0}}^{i} \left(\frac{\varepsilon}{2} \right) \right) \geqslant$$

$$\geqslant t \left(\sup_{\varepsilon} \inf_{x, y \in M} F_{x-y} \left(\frac{\varepsilon}{2} \right), \sup_{\varepsilon} F_{x_{0}}^{i} \left(\frac{\varepsilon}{2} \right) \right) =$$

$$= t (1, 1) = 1$$

So, for every $\lambda \in (0, 1)$ and $i \in I$, there exist $\delta_{i, \lambda} > 0$ such that:

$$\inf_{x\in M}F_x^i(\delta_{i,\lambda})>1-\lambda.$$

Then we have $F_x^i(\delta_{i,\lambda}) > 1 - \lambda$ for every $x \in M$. If $\frac{\delta_{i,\lambda}}{\varepsilon} = \mu(i, \varepsilon, \lambda)$ we have

 $F_x^i(\mu(i, \epsilon, \lambda)\epsilon) > 1 - \lambda$ and so $\frac{F_x^i(\epsilon)}{\mu(i, \epsilon, \lambda)} > 1 - \lambda$ which means (4) Now, we have:

(6)
$$\lim_{n\to\infty} x_n - Tx_n = \lim_{n\to\infty} (\lambda_n - 1) Tx_n + \lim_{n\to\infty} (1 - \lambda_n) x_0 = 0$$

because $TM \subseteq M$ and M is bounded in (ε, λ) -topology. Let us prove that from (6) it follows:

$$\lim_{n\to\infty} x_n - T^{n_0} x_n = 0.$$

We have:

$$F_{x_{n}-Tn_{0}x_{n}}^{i}(\varepsilon) \geq t \left(F_{x_{n}-Tx_{n}+}^{i} \dots + T_{x_{n}-T}^{n_{0}-2} \prod_{x_{n}}^{n_{0}-1} \left(\frac{\varepsilon}{2} \right), \right.$$

$$\left. , F_{Tn_{0}-1x_{n}-Tn_{0}x_{n}}^{i} \left(\frac{\varepsilon}{2} \right) \right) \geq$$

$$\geq t \left(F_{Tx_{n}-x_{n}+}^{i} \dots + T_{x_{n}-Tx_{n}}^{n_{0}-2} \prod_{x_{n}}^{n_{0}-1} \left(\frac{\varepsilon}{2} \right), F_{x_{n}-Tx_{n}}^{f_{n_{0}-1}} \left(\frac{\varepsilon}{2} \cdot \prod_{r=0}^{n_{0}-2} q \left(f^{r}(i) \right) \right) \right) \geq$$

$$\geq t \left(t \left(F_{x_{n}-Tx_{n}+}^{i} \dots + T_{x_{n}-Tx_{n}}^{n_{0}-3} \prod_{x_{n}-T}^{n_{0}-2} \left(\frac{\varepsilon}{4} \right), F_{x_{n}-Tx_{n}}^{f_{n_{0}-2}} \left(\frac{\varepsilon}{2} \prod_{r=0}^{n_{0}-3} q \left(f^{r}(i) \right) \right) \right),$$

$$, F_{x_{n}-Tx_{n}}^{f_{n_{0}-1}} \left(i \right) \left(\frac{\varepsilon}{2} \prod_{r=0}^{n_{0}-2} q \left(f^{r}(i) \right) \right) \right).$$

It is easy to prove that the following inequality holds:

$$F_{x_{n}-Tn_{0}_{x_{n}}}^{i}(\varepsilon) \geqslant \underbrace{t\left(t\left(\dots t\right) \atop (n_{0}-1) \text{ times}} t\left(F_{x_{n}-Tx_{n}}^{i}\left(\frac{\varepsilon}{2^{n_{0}-1}}\right), F_{x_{n}-Tx_{n}}^{f(i)}\left(\frac{\varepsilon}{2^{n_{0}-1}q(i)}\right)\right),$$

$$, \dots \dots, F_{x_{n}-Tx_{n}}^{f^{n_{0}-2}(i)}\left(\frac{\varepsilon}{2^{2}\prod_{r=0}^{n_{0}-3}q\left(f^{r}(i)\right)}\right)\right), F_{x_{n}-Tx_{n}}^{f^{n_{0}-1}(i)}\left(\frac{\varepsilon}{2\cdot\prod_{r=0}^{n_{0}-2}q\left(f^{r}(i)\right)}\right)\right)$$

Let $\Phi(x_1, x_2, \ldots, x_{n_0}) = t(t(\ldots, (t(t(x_1, x_2), x_3), \ldots, x_{n_0}))$ where $(x_1, x_2, \ldots, x_{n_0}) \in [0, 1]^{n_0}$. Since t is a continuous mapping from $[0, 1]^2$ into [0, 1] and t(1, 1) = 1 it follows that Φ is a continuous mapping from

[0, 1]^{n₀} into [0, 1] and
$$\lim_{(x_1, \dots, x_{n_0}) \to (1, 1, \dots, 1)} \Phi(x_1, x_2, \dots, x_{n_0}) = \Phi(1, 1, \dots, 1)$$

$$= \underbrace{t(t(\dots, t(t(1, 1), 1), \dots, 1) = 1}_{(n_0-1)-\text{times}} \delta \in (0, 1) \text{ there exists}$$

 $\lambda_s \in (0, 1)$ such that:

 $\Phi(x_1, x_2, \ldots, x_{n_0}) > 1 - \delta$ if $x_i > 1 - \lambda_{\delta}$, $i = 1, 2, \ldots, n_0$. From (6) it follows that there exists $N(i, \epsilon, \lambda)$ such that:

$$F_{x_{n}-Tx_{n}}^{i}\left(\frac{\varepsilon}{2^{n_{0}-1}}\right) > 1-\lambda, \ F_{x_{n}-Tx_{n}}^{f'(i)}\left(\frac{\varepsilon}{2^{n_{0}-r}\prod_{s=0}^{r-1}q\left(f^{s}(i)\right)}\right) > 1-\lambda$$

 $r=1, 2, \ldots, n_0-1$, for every $n \ge N(i, \varepsilon, \lambda)$. So we have:

$$F_{x_n-T_{n_0}}^i(\varepsilon) > 1-\delta$$
 for every $n \ge N(i, \varepsilon, \lambda_\delta)$

which means that the relation (7) is valid.

Since the mapping T is continuous and the set $T^{n_0}M$ is sequentially compact there exists a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty} T^{n_0}_{x_{n_k}} = y$ and $y = \lim_{k\to\infty}$ $x_{n_k} = \lim_{k \to \infty} Tx_{n_k} = T(\lim_{k \to \infty} x_{n_k}) = Ty$ because of (6) and (7). So $y \in Fix(T) \neq \emptyset$ and the proof is complete.

Corollary Let S be a Banach space, M be a bounded, closed and convex subset of S and T be a mapping from M into M such that:

- 1. $||Tx-Ty|| \le ||x-y||$ for every $x, y \in M$.
- 2. The set $T^{n_0}M$ is compact.

Then there exists $x \in M$ such that x = Tx.

Proof: It is known that S is a random normed space if:

$$F_{x}(\varepsilon) = \begin{cases} 1 & ||x|| < \varepsilon \\ 0 & ||x|| \geqslant \varepsilon \end{cases}$$

and the mapping t is min. Moreover the (ε, λ) -topology on S and the norm topology are the same. It is easy to see that from the condition 1. it follows that $F_{Tx-Ty}(\varepsilon) \geqslant F_{x-y}(\varepsilon)$ and that $\sup_{\varepsilon} \inf_{x, y \in M} F_{x-y}(\varepsilon) = 1$ since the set M is bounded. Here is $I = \{i\}$ and the mappings f, g and $\{\Psi(\varepsilon)\}$ are identical mapping.

REFERENCES

[1] Olga Hadžić, A fixed point theorem for mappings with a Y-densifying iteration in locally convex spaces, Matematički vesnik (in print).

- [2] Olga Hadžić, A generalization of a fixed point theorem in probabilistic locally convex spaces, Matematički vesnik (in print).
- [3] Göhde, D, Über Fixpunkte bei stetigen Selbstabbildungen mit kompakten Iterierten, Math. Nachr. 30, 251—258, 1965
- [4] Volker Stallbohom, Fixpunkte nichtexpansiver Abbildungen, Fixpunkte kondensierenden Abbildungen, Fredholm'sche Sätze linearer kondensierender Abbildungen, D. Thesis, Aachen, 1973
- [5] V. I. Istratescu, Intriduction to the theory of probabilistic metric spaces with applications, Editura Tehnica, Bucuresti 1974. (roumanian)