PUBLICATIONS DE L'INSTITUT MATHEMATIQUE
Nouvelle série, tome 22 (36) 1977, pp. 63—69
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In this paper we shall consider graphs without loops and multiple edges.
Let the vertices of a graph G be denoted by v,, v,, ..., v, and the edges by
e, €, ..., e,. By e we shall denote an arbitrary edge of G.

The adjacency matrix of G is the matrix A=|la

ij

rlz, where a;;=1 if the

. ! ‘
vertices v; and v; are adjacent and a;=0 otherwise. The characteristic polyno-

mial of this matrix, ® (G)=® (G, N)=det(AI— A4) is called the characteristic
polynomial of the graph G.

If the graph G has n vertices, m edges and ¢ components, its cyclomatic
number v=v(G) is given by v=m—n+c. Graphs with v=0 are called forests.
The set of all graphs with n vertices and with the cyclomatic number not greater
than v will be denoted by I, (U, ,CI', ,,,). Hence, I', , is the set of all
forests with n vertices.

Let further p (G, j) be the number of ways in which j mutually non-inci-
dent edges can be selected in G. It is both consistent and convenient to define
2(G, 0)=1 for all graphs. It is known [10, 9, 8] that the characteristic polyno-
mial of G can be presented in the form

[n/2} . . .
(1) ®(G)=S (=1 p(G, j)w
j=0
if and only if v(G)=0.

In a number of recent papers [7, 1, 5], a polynomial of the form (1)
was considered also for the case of graphs having cycles. This was the moti-
vation to introduce the following notion

Definition. The polynomial

o .
S (~1Y p (G, Hn

) %(G) = (G, 1) =
j=0

J

n

will be called the acyclic polynomial of the graph G.
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Hence, in the case of G being a forest, «(G) coincides with @ (G).
Accordingly, in the present work we shall focus our interest mainly on the
graphs having cycles, i.e. graphs with v(G)>0, for which o (G)=£® (G).

There exist nonisomorphic graphs having cycles with equal acyclic poly-
nomials. The smallest example of this kind is the pair G;, G, with 5 vertices
and with «(G)=a(G)=2—5M+4A.

Gy )

Let us firstly list some simple properties of the numbers p (G, j), which
can be proved without difficulty.

p(G, D=m; p(G, 2)=m(m+ 12— di+d5+ - -+ +dD/2,

where d; is the degree of the vertex v,. If n is even, p(G, n/2) is equal to
the number of 1-factors in G. From p (G, j)=0 or p(G, j)=1 it follows p(G, j+
+1)=0. Let the graph G possess k (k>0) isolated vertices v, ..., v, and
let Gg=G—v,— -+ —w. Then from p(G, j)=1 it follows j=(n—k)/2 and the
graph G, has a unique 1-factor. Further properties of the numbers p(G, j) for
regular graphs can be found in [10].

Let G—e be the graph obtained by deletion of the edge e from G.
Furthermore, G —(e) is the graph obtained from G by deletion of the edge e and
the both vertices incident to it. Then the recurrence relation ® (G) =P (G—e)—
—® (G- (e)), which is valid for forests [3] can be generalized to all graphs.

Theorem 1. If G is a graph with at least one edge, then
(3) % (G)=a(G—e)—a (G~ (e)

Proof. Let us consider the p(G, j) distinct selections of mutually non-
-incident edges in G. There are p (G —e, j) such selections which do not include
the edge e. On the other hand, if the edge e is contained in a particular
selection, then the edges incident to e are necessarily excluded. Hence, there
are p(G—(e), j—1) selections of j mutually non-incident edges which contain
e. Therefore,

4 (G, N=p(G—e HN+p(G—(e), j—1)

The substitution of (4) back into (2) results in eq. (3).//
By repeated application of eq. (3), one obtains the following conclusion-

Corollary 1. 1. The acyclic polynomial of a graph can be expressed
as a linear combination of characteristic polynomials of its subforests.
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Corollary 1. 2. Let C, and P, be the cycle and the path, respectively,
with n vertices. Then,

(5 «(C) =D (P) - (P,_,)

Substituting A= 2 cos ¢, it can be shown [3] that ®(P,)=

w. Therefrom,

sin ¢

« (C,)=2cos nt, and the zeros of «(C,) are ZCOSQJ;_—I)T—C, j=1..
n

., n.

Corollary 1. 3. Let the graphs PF and C% be obtained by joining k
(k>=1) new vertices to each vertex of P, and C,, respectively. Hence, P¥ and
C} contain (k + 1) n vertices. Then from Theorem 1, « (C,',‘)=d>(P,’f)~ Ak D (Pr_y).

On the other hand [2], ® (PY, »)=1*® (P,,, 7\—%). Substituting A —-%=

=2cosu, we obtain oc(C,’f)=27\"" cos nu, from which the zeros of oc(C,’f) can

be easily determined: cos(~2]2+—nl)n :!:\/ cos? Q%np_ﬂ

+k, j=1,...,n and 0,
(k—1)n times.
Corollary. 4. Let among the n vertices of the graph G, be k (k>0)

vertices v, ..., v, of degree two, such that the vertex v, is adjacent to v;,_,
and v;,, (i=2,..., k—1). Then,

(6) % (Gi) =2 (Gyp) — « (Gy_y)
In particular, « (C,) =2« (C,_;)— a2 (C,_,).
Proof is completely analogous to that of Theorem 3 in [3] and will

not be reproduced here. In [3] is also shown that the recurrence relation (6)
can be transformed into

% (Gi) = (Gy) @ (P_q) — % (Gp) P (Px_,)

Let the graphs V,(n>2) and W,(n>4) be obtained by joining all vertices
Vis Va5 ovn s Vg of P,_, and C,_;, respectively, to a new vertex v,.

1 2 n-2 n-1 ‘ n

Vn Wn
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Theorem 2.

n—3

(7 «(V)=@(P)— 3 ®(P,_, ) P(P)
j=0 )
n—3

(8) aeW)=a(C)— 3 a(C,,_) P(P)
Jj=0

where by definition, o.(C))=® (P,) and o (C,)=® (P)).

Proof. Applying Theorem 1 first to the edge between the vertices v,
and v,_, of the graph V, and thereafter to the edge between v,_;, and v,_,,
we obtain the recursion relation a(V)=2WV,_D=alV, )—P(P,_,). Eq. (7)

follows then from the initial conditions V=P, and V,=P,.

Applying the Theorem 1 to the edge between the vertices. v, and v,_; of
the graph W,, we get a (W) =a (V,) — 4_2). The combination of this equation

with (7) and (5) results in eq. (8).//

Theorem 3. The acyclic polynomial of the complete graph K, is given by

[7/2]
©) (K)=3 (- 1)1(22]’)'( )w-—Zf

or by a recursion relation

(10) o« (K,) =2 (K, 1) —(n—1) 2 (K,_»)

Proof The recursion formula (10) can be verified directly by eq. (9).

In order to prove (9), it is sufficient to show that

p D=0 ()

There are <n
2j

) ways to select 2;j vertices in the graph K,. Every such a selec-

tion induces a distinct subgraph K,,. Hence, p(K,, j)=<2n.) p(K,;, Jj). But
J

p(K,;, j) is just the number of 1-factors in K,;, which is known (see, for

example, [6], p. 92) to be equal to (2j)!/(2/ j!). //

Theorem 4. The acyclic polynomial of the bicomplete graph K, ., (n,+

+n,=n, n,=n,) is given by

(]]) a(Kn,,n2)= 22 (—-1)1]' (n})(n.z) a2
j=0 JI\J
and satisfies the recursion formula

(12) a(K,,“nz)=7\O(. (Knl,nz—l)“nlm(Knl—l, nz—l)
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Proof. The n, +n, vertices of K, ., can be partitioned into two classes,
such that neither the n, vertices from the first class, nor the n, vertices from

the second class are mutually adjacent. There are ( n.l)(n.z) ways to select j
\ J J
vertices from the first class and j vertices from the second class. Every such

a selection induces a distinct subgraph K, ; of K, . Therefore, p (K, »,J)=
=( 1)(n2) p(K;, j, j)- Since p(K; ;, j) is just the number of 1-factors in X, ,,
J

J
which is equal to j!, we have

Koy, ma» 1) =J! (’;)(”2)

J
and eq. (11) follows. Eq. (12) can be verified directly by eq. (11).//
Let the edges of G be labeled so that F=G—e, — - - - —e, is a (maximal)

spanning forest of G.

Theorem 5. If the cyclomatic number of the graph G is v and F is a
(maximal) spanning forest of G, then for all j=1, ..., [n/2];

ng(G’ ])_p(F’ j)gv'max {P (Ha j—' 1) ] HEFH—Z, V—l}

Proof. A repeated application of Theorem 1 gives

w(G)=a(G-e,— - —e)— S a(G-e— - —e,_,—(e)

t=1

Now, the graphs G—e;— - - -¢,_, —(¢,) have n—2 vertices and their cyclomatic
numbers are not greater thanv—1¢ (¢=1, ... ,v), hence are not greater than v—1.//

Corollary 5. 1. For all j=1, ..., [n/2],
PG NP, j)+ 3 max {p(H j=1) | HET, s o)
If G is composed of two disjoint components H, and H,, we write G =H D H,.
Theorem 6. If G=H,@®H,, then
(13) o« (G) =« (H) o (H))
Proof. j mutually non-incident edges in G can be selected so that k of

them belong to H, and j—k of them belong to H, (k=0, 1,..., j). There
are p(H,, k) p(H,, j—k) such selections. Therefore,

PG, )= p(Hy Wp(Hyr j—F)

k=0
which substituted back into (2) gives eq. (13).//

5%
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Corollary 6. 1. If G=H DH,D - -DH,, then «(G)=ao(H)a(H,)
- (H).
In [4] is proved that the graphs G, | fulfil the inequalities

(14) PPy, j)=p(G, j)

for all j=1,..., [#/2]. This result can be generalized for graphs with cyclo-
matic number not greater than one.

Theorem 7. If GETL', |, then for all j=1, ..., [n/2],

r(C,, N=p (G, j)

Proof. Since P, is a spanning tree of C,, from Theorem 5 it follows
that p(C,, ))=p (P,, j). Because of (14), Theorem 7 holds for all G&T, ,.
Thus we have to prove Theorem 7 only for graphs with v(G)=1.

Let the graph G* with v(G*)=1 has the property p (G*, j)=p (G, j) for
all GeT', ;. We prove that G*=C,.

In every graph G with v(G)=1, there exists an edge e, such that G—e,
is a forest. Then G —(e,) is a forest too. From eq. (4). p(G, j)=p(G—ey, j)+
+p(G-(e), j—1). Now, p(G, j) has to become maximal for G =G*. According
to (14), the right side of the expression for p(G, j) is maximal if G* —e, =P,
and G*—(e))=P,_,. But this is possible only if G*=C,.//

Let S, be the star with n vertices. In [4] is proved that if G is any
connected graph with n vertices and with v=0 (i. e. G is a tree), then for
all j=1, ..., [#/2], p(S,, ))<p(G, j). We present here a generalization of
this result for v=1. Let S, be obtained by introducing a new edge to S,.
Hence S, contains a triangle.

XK

*

Sn Sn

Theorem 8. If G is any connected graph with n vertices and with v=1,
then for all j=1, ..., [n/2],

p(Sn, N<p (G, ))

Proof is straightforward, since p(Ss, 1)=n, p(Si, 2)=n-3 and
p (S, 3)=0. All connected graps with v=1 have p(G, 1)=n but p(G, 2)>
>n—3, since the sum df+d§+ .+ + +d?is maximal for S} and therefore p(Sy,2)
is minimal.//

Concluding this paper we would like to point at a yet unproved property
of the acyclic polynomials, which was tested in a large number of cases in
[1, 5} and which is of some importance in chemistry.
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Conjecture. The zeros of the acyclic polynomial are real.
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