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Abstract. L. C. Siebenmann’s concept of a tame at oo locally compact
(non-compact) space is generalized defining ¢-tame at oo spaces, where € is an
arbitrary class of topological spaces. The n-dimensional version of it, called
n-tameness at oo, is shown to be related to the fundamental dimension of com-
pact metric spaces through the following complement theorem.

Theorem. 4 Z-set X in the Hilbert cube Q has the fundamental di-
mension <n if and only if Q-X is n-tame at .

1. Introduction. This paper is a continuation of our study of ho-
motopy properties at infinity of locally compact (non-compact) spaces began
in [4]. The key idea is the same only the property considered is different.
Here we investigate spaces (-tame at oo. The concept is motivated by and
generalizes Siebenmann’s notion of a tame at o space introduced for the
purposes of studying manifolds which admit boundaries in [11] (see also [6]).
The n-dimensional version of it, n-tameness at o, is shown to be closely re-
lated to the shape theoretic notion of fundamental dimension (Theorem (3.1)).
That complement-type theorem is another example showing the close connec-
tion between shape theory and homotopy theory at oo of locally compact
spaces formulated in [4].

The brief description of the content of the sections follows.

In § 2 we first define C-tameness at oo for (non-compact) locally compact
spaces. Then we prove several elementary theorems concerning it. In the formu-
lations and in the methods of proofs they resemble corresponding theorems
about (-triviality at o and @-movability at oo from [4].

The main result of the paper is Theorem (3.1) in § 3 where we prove
that a Z-set X in the Hilbert cube Q (or more generally in an arbitrary ab-
solute neighborhood retract) has the fundamental dimension [2] <n if and
only if its complement M =0 —X is n-tame at oo, i. €., /P"-tame at o where
#" is the class of all finite polyhedra of dimension <n. This geometric
characterization of the fundamental dimension can be used to get simplified
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proofs of results in [9]. We present only a short proof (Proposition (3.5)) of
Nowak’s estimate ([9]) Fd(X,UX,)<max (Fd(X,), Fd(X,), Fd(X,NX,)+1) of
the fundamental dimension of the union of two compacta.

We assume that the reader is familiar with Borsuk’s shape theory for
compact metric spaces (see his recent book [2]). Only in (2.5) we shall use
shape theory for arbitrary topological spaces in the form described by Koz-
lowski in [8]. A number of arguments use standard theorems and concepts of
infinite dimensional topology. We recommend the survey [5] as a good source
of information on this topic.

We keep notation from [4] and all undefined terms are taken from
there. In particular, recall that all locally compact spaces (discriminately de-
noted M and N) are assumed non-compact. We use € to denote a fixed, but
otherwise unless explicitely stated completely arbitrary, class of topological
spaces. " consists of all members of € whose (covering) dimension is <n.
P and C7) denote the class of all finite CW-complexes and the class of all
CW-complexes, respectively.

Portions of this paper were included in Chapter HI of the author’s
doctoral dissertation written under R. D. Anderson at LSU in 1975. The
author wishes to express his thanks to Professors R. D. Anderson, R. M.
Schori, T. A. Champan, G. Kozlowski and J. West for their friendly care du-
ring his studies in USA.

2. (C-tameness at . In the study of questions concerning the possibility of
putting boundaries on finite-dimensional manifolds ([11]) and Q-manifolds ([6])
the concept of a tame at oo non-compact locally compact space has been
useful. Here we shall introduce, in analogy with [4], a generalization of it
named “C-tame at o’’, where € is an arbitrary class of topological spaces.
In this section we shall prove several elementary theorems concerning the
property of (-tameness at o which do not require too many assumptions
about €.

Let € be a class of topological spaces. A locally compact non-compact
space M is C-tame at o provided that for every compact subset 4 of M there
is a compact BDA such that the inclusion M—B(C__M-—A factors up to ho-
motopy through some member X of C, i. e. there are maps M—B-—->X and
X—M—A making the diagram

M-BC__ M-4
N,
N
X

homotopy commutative. A space M is tame (n-tame) at oo if it is p—(P"—)
tame at oo.

The following three examples illustrate this concept.
The reader will be able to construct many more using theorems from this paper
(especially (3.1)).

(2.1.) Example. Let ACX be a Z-set in a compact ANR X. Then
M=X—-A4 is tame at oo.
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Proof. By (2.4) below, it suffices to prove that Mx Q@=XxQ0—-A4xQ
is tame at oo. As X x Q is homeomorphic to P x Q, where P is a finite poly-
hedron [5], one easily sees that A x Q has arbitrary small closed neighborhoods
of the form P’x @, with P’ a compact subpolyhedron of P x I", for some n,
where Q is represented in the standard way as the countable infinite product
[Tiso I of the unit interval Z;=[—1, 1] while "=[Ti_; 7, and Q,=] [i=n I.
Thus, complements of big compact subsets of M x Q are homotopy equivalent
to P'xQ,, since AxQ is a Z-set in X x Q.

(2.2) Example. Let 6={X}, fi}i~o be an inverse sequence of finite po-
lyhedra and let Map(s) be its infinite mapping cylinder [6]. Then Map (5)
is {X;}i~o-tame at oo.

Proof. The proof is clear once it is known that Map (¢) is homotopy
equivalent to X, [6].

(2.3) Example. A connected, locally connnected, and locally compact
space M is (C-trivial at oo, for every class , if and only if M is D-tame
at oo, where 9, is the family of all finite discrete sets (see [3]).

We shall prove first that @-tameness at oo is preserved under the rela-
tion of quasi-domination at oo introduced in [4]. Recall that a locally compact
space M quasi dominates at o another such space N provided that for every
compact subset 4 of N there is a compact B A and proper maps f: N—>M
and g :M—N such that gof|y_p is in N—A homotopic to the inclusion
N-BC_ N-A.

(24) Theorem. If a space M is C-tame at o and quasi-dominates at
a space N, then N is also C-tame at oo.

Proof. Let ACN be an arbitrary compact subset. Since M quasi-domi-
nates at o N, there is B, DA and proper maps 2 N—M and g: M—N such
that gof|y_p, is in N—A homotopic to the inclusion N—-B,C_, N—A. Now,
g !'(B,) is a compact subset of M. The assumption that M is C-tame at oo
gives us a compact subset B’ of M, a member X of €, and maps o' : M —B'—>X
and p': X—M —g~1(B,) with the property that f'oa’ is in M —g~1(B,) homo-
topic to the inclusion M—B' C_ M —g~1(B,). Pick a compact subset B of N
such that f(N—B)CM—B' and define «: N—B—>X and B: X>N-4 as
compositions «'of|y_p and gof’, respectively. It is easy to see that Boa is
in N—A homotopic to the inclusion N—B C_ N—A, ie. that N is @-tame
at oco.

For a locally compact space M with a sufficiently nice local structure
the question whether M is C-tame at oo, where € is a class of CW-complexes,
depends only on homotopy types of spaces in €. To prove a slightly stronger
form of that statement we shall use the shape theory of arbitrary topological
spaces in the form described by Kozlowski [8].

A class of topological spaces € shape dominates a class D if for every
XED there is YEEC such that Y shape dominates X. In Kozlowski’s approach
this means that there are natural transformations ¥ : [X, —]~[Y, —] and §:
[Y, —}>[X, —] between functors [X, —], [Y, —]: YG—Sets, where Y6 is the
homotopy category of spaces having the homotopy type of CW-complexes, such
that §o 5 =7 d.

4%
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(2.5) Theorem. Let M be a locally compact ANR space (a locally com-
pact locally n-connected metrizable space). Let D be a class of metrizable spa-
ces (of dimension <n). If M is D-tame at «, and a class € of CW-complexes
shape dominates the class D, then M is also C-tame at .

Proof. We shall prove only the n-dimensional version. The same proof,
slightly changed, applies to the case M & ANR.

Let M be a locally compact locally n-connected metrizable space and
let ACM be a compact subset. By [7], there is a CW-complex P of dimen-
sion < n together with a map ®: P->M—-A such that, for every map g:
X—->M~—A defined on a metrizable space X with dim X<(nm, there exists a
map g* X—P such that g and ®og* are homotopic (in M — A). Select BD A,
X&) and maps f: M—B—>X and g: X—M— A such that the diagram

homotopy commutes. Since <) is shape dominated by &, there is Y& and
natural transformation ¥ and & as above. As Y is a CW-complex, there is a
map a: X— Y that induces G, i. e., a*=§. Let f': M—B—>Y be the composi-
tion aof and let g’: Y>M — A be the composition ®og**, where g**: Y—P is
a representative of the homotopy class ¥ »([g*]). The chain [@og**acf]=
=0 oftoa* ([g%*]) = Quof*oGpo F p([g*]) = Dyof* ([g*]) =[DPog*f1=[gof] =
=[i] shows that g'of’ ~i. Hence. M is C-tame at oo.

As there are only countably many homotopy types among compact poly-
hedra (of dimension <n) [1], we immediately get

(2.6) Corollary. There is a sequence P,, P, ... of finite polyhedra (of
dimension <n) such that an ANR (an LC" metrizable space) M is tame (n-tame)
at oo if and only if M is {P,, P,, ...}-tame at oo.

Our next theorem in view of the example (2.3) can be considered as an
impovement of (3.8) in [4]. The assumption of C-unstability there is weakened
here to the requirement of one-sided global unstability that we now define,

A closed subset 4 of a space X is called globally left (right) unstable in
X if for each open neighborhood U of 4 in X the inclusion U—-AC_ U has
a left (right) homotopy inverse.

(2.7) Theorem. Let N be a compact space and let X, DX,D ... be a
decreasing sequence of its closed subsets. Suppose each X; is globally right un-
stable in N and X = Niso X; is globally left unstable in N. If the complements
M;=N-X; are C-tame at «, then M=N—X is C-tame at .

Proof, Let ACM be a compact subset. The set N— A4 is an open neigh-
borhood of X in N. Since X is the intersection of X;’s we can find n>1
such that N—A4 is an open neighborhood of X,. But M,=N-X, is C-tame
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at oo, so that there is a compact BC M, a member X of ¢, and maps f:
M,-B=(N—-B)—X,~X and g: X—>M,— A=(N—A4)—X, making the diagram

i
(N-B)-X, C_,(N-A—-X,
7
NS /g
N rd
N/
X
homotopy commutative. In the commutative diagram of inclusions

i

J/ N N

S I |

¥ l l
N-B | & |
LN | [
N\ | |

AN \’

V=B ~XC ., (N=4)~x

i, has a right homotopy inverse it and Ji has a left homotopy inverse e
Then k=~jl i, has a right homotopy inverse kR =if oj,. Hence, j~lojokR. Fi-
nally, j is homotopic to (log)o(fok®) proving that M is C-tame at oo.

The product of spaces (-tame at oo need not be (-tame at oo (for
example, the real line R is {X}-tame at oo, where X is the subspace {0, 1}
of [0, 1], while the plane R?=Rx R is not). But we can prove the following
result related to products.

(2.8) Theorem. Let N; be a compact contractible space and let X;_ N,
be a closed subset, for each i=1,2,3, ... .

Put N=T12: N, Xx=T1% X;,M;=N,~ X, and M= N—X. If each M, is C-tame
at o, each X; is globally right unstable in N;, and X is globally left unstable in N,
then M is C,xCyx - -+ -tame at o, where C,xC,% - - - denotes the class
of all finite products K, x - - - x K, with K;&C;. .

Proof. Let A be a compact subset of M. The set N—A4 is an open
neighborhood of X in N. Hence, there is n>>1 and there are compact subsets
A CM,, ..., A,CM, such that XC (N, —A) % + -+« - - X (N, = A,) % [ T iesn Ny
Since each M; is C;tame at o we can find compact subsets B; of M, spa-
ces K;c(C;, and maps f;:M,—B;—~K, and g:K;—>M;— A, such that the
diagram
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homotopy commutes, j=1,..., n. Let B=M—-(N,—B)x -+ x(N,—B,)x
% [ Txsn Ni. In the ladder
M—B=(N,—B)x - x(Ny—B)x[ [san Ni =X
N
v
(N,=B) x -+« + x (N, =B x [ Lisn Ni
l
¢jf>< xjfxid
(M, ~B)x -+ - x(M,— A) x | Lesn Ni

| proj
(M1_Bl)x v X(Mn_Bn)
flx s 9 Xf;;

K x:--xK,
gy X Xgy

(MI—AI)X tet ><(Afn—An)

X0

(MI—AI)X tt ><(Mn—An)X I_Ik>nNk

kyx - xk,xid
(NI_AI)X et X(Nn_An)xl_[n>ka

L

I

(N =4)x -+ x(Ny=4) % [ Lisn Ne— X
n

v
M-A

j,B is a right homotopy inverse of the inclusion j;: M;— B;,C_, N,—B;, proj
is the projection, x 0 is the obvious embedding, k; is the inclusion
M,—A;C_ N;—A;, and ' is a left homotopy inverse of the inclusion I
Wy =AY x o+ ) (Ny— A x [Tion Ne= XCL (N, = A x - - x (N, = A) x [ Lo
N., i=1,..., n. The composition of all maps in the above diagram is ho-
motopic to the inclusion M~ BC_ M —A. Thus, M is C; x @, x - - - -tame atoo.

The theorem (3.13) in [4] can be improved to the following result.
First recall that a non-compact locally compact space M is C7U-trivial at oo
if for every compact set 4 in M there is a larger compact set B such that
every map of a CW-complex into a component of M — B is null-homotopic
in M—A.

(29) Theorem. Let N be the union of compacta N, and N, intersecting
in a compact ANR space N,. Let XCN be a closed connected subset such that
X,=XNN, is connected and such that M,=N,—X, is contractible and CU-tri-
vial at o and M,=N,—X and M,=N,—X are one-ended. If M=N-X
is C-tame at oo, then both M, and M, are C-tame at .
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Proof. Consider an arbitrary compact subset A, CM,. A,=N,N4, is
a compact subset of M,. One easily constructs a proper retraction of M,
onto M, (see [10, Theorem (4.5)]) and, therefore, also a proper retraction r:
M —M,. Hence, there is a compact subset 4 of M such that r (M —A)C M, —4,.
Since M is C-tame at oo, there is a compact BC M, a space K&, and
maps f: M —B—>K and g: K—>M — A making the diagram

M-B C M- A
N A
AN /8
NS
K
homotopy commutative. Put B, =B(\M,. One easily checks that the diagram

Ml"'Bl ., MI_AI

Q Tr]M_A
M-B C___M—-A
AN A
f\ /g
N
K

homotopy commutes. Hence, M, is (-tame at oo. In a similar way we prove
that M, is C-tame atoo.

An end e of a locally compact space M is C-tame, where € is a class
of topological spaces, if for every neighborhood U of e in FM, the Freuden-
thal compactification of M, there is another neighborhood VCU of e, an
X&¢, and maps f:V(\M—X and g X->UN\M such that the diagram

i
VAM C__ UNM

is homotopy commutative, i. e., the inclusion i is in UM homotopic to the
composition go f.

(2.10) Theorem. (a) Let € be a component lzeréditary class of spaces
closed under the formation of disjoint unions. If a locally compact space M is
C-tame at oo, then each end e of M is C-tame.

(b) Let a class C be closed under the formation of finite disjoint unions. If
each end e of a locally compact space M is C-tame, then M is C-tame at oo.

Proof. (a) Let eSEM be an end of M and let U’ be a neighborhood
of e in FM. Select a neighborhood UCU’ of e such that UNEM is both
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open and closed in EM, the end set of M. Then there are disjoint open sets
U,=U, U,, U;,..., U, of FM whose union covers EM. Let A=M — \J7_,U,.
Note that 4 is a compact subset of M. Since M is (C-tame at oo, we can
find a compact BDA4, an X&¢@, and maps f:M—B—X and g: X>M—A
making the diagram

M—\Bc___,M—A

A

'\ /g
N

homotopy commutative. Clearly, g~ (UNM)=Y is the union of components
of X and f((M—B)NU)CY. Put V=UN((M - B)UUEM). The open set V is
a neighborhood of e in FM and the diagram

VOM C__ UNM
AN A
I &l

\Y/

homotopy commutes. As Y& it follows that the end e is @-tame.

(b) Let ACM be a compact subset. U=FM —A is an open set contai-
ning EM. Hence, we can find finitely many disjoint open sets ¥V, ¥V,, ..., V,
and X, €6, ..., X,&C€ such that V= V;DEM and the inclusion ¥;N
NMC_UNM factors up to homotopy through X;, for each i=1,..., n. It
is easy to see that the inclusion VN\MC UNM factors up to homotopy
through the disjoint union X of X;s. Put B=M—- UV, Clearly, M-
—BC_ M — A homotopy factors through X. Hence, M is C-tame at oo, since
XcC.

3. Fundamental dimension and n-tameness at oo.

We shall get a characterization (Theorem (3.1)) of the fundamental di-
mension of a compact metric space X in terms of n-tameness at oo of its
complement M =Y —X in a compact ANR X containing X as a Z-set. Using
this characterization of the fundamental dimension, we see that the result of
the previous section imply (and, therefore, generalize) some theorems on the
fundamental dimension from [9]. We believe that this is yet another piece of
evidence that shape theory of compacta should be considered a part of the
homotopy theory at oo of non-compact locally compact spaces [4].

The fundamental dimension Fd(X) [2] of a compactum X is defined as
min {dim Y |Y shape dominates X}.

(3.1) Theorem. Let Y be a compact ANR and let X, XCY, be a
Z-set in Y. Then Fd(X)<n if and only if M=Y— X is n-tame at oo.
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Proof. As in [4, theorem (3.2)], without loss of generality we can
assume Y=, the Hilbert cube.

Suppose X is a Z-set in Q and Fd(X)<n. Then there is an n-dimen-
sional compactum Z such that Sh(Z)>Sh(X). We can represent Z as the
inverse limit limo of an inverse sequence o={P;, f;} where P, =point and

dim P;<n, for every i>0. The product Map (c) x @, where Map (s) is the
infinite mapping cylinder of ¢ [6], when compactified by adding (limc)x Q

is homeomorphic to Q and (limo)x Q is a Z-set in (Map (¢)\Ulim 6) x Q=0
[6, Theorem 1.5]. Since Sh(Z)=Sh(lim o x Q)>Sh(X), Map (¢) x @ homotopy

dominates at o a space M =Q —X([4, Theorem 2.6)]). Hence if we prove
that Map (6) x Q is n-tame at oo it will follow from Theorem (2.4) that M is
n-tame atoo.

Let ACMap (o) xQ be an arbitrary compactum. Pich k large enough
so that ACMap({P,< P,<- -+« P,_}) xQ=B. We shall prove that there
is a homotopy g,: ¥V —V, with ¥ =Map (c) x @ — B, such that g,=id and g, (V)
is a copy of Py.

The proof of that is rather simple but the notation is cumbersome.
Let M, =Map ({Pr<Pi,1<---PxQ, let M,=M,J[(im {P < Py, <+ - )} X

x Q), and let M,=P, x Q. In the diagram

iz il h
C—r M,—> M,

d, pd

maps #; and i, are inclusions, 4, is the end of the obvious strong deforma-
tion d,(0<t<<1) of ¥ onto M, that slides P, x[0, 1)xQ onto P,x{0}xQ,
and y is a homotopy inverse of 7;. It exists since lim{Py< P, ;< ---}xQ

is a Z-set in the compactification M, of M,. Let ¢,(0<t<1) be a homotopy
connecting id and yoi/;. The map 4 is a homeomorphism of the mentioned
compactification onto M, (its existence follows from [6, Theorem 1.5]). Finally,
let 2,, 0<t<1, denote the map mapping a point (x, ) in M;=P,xQ into
(x, (1-1)9).

Then our g, is defined by

(s> 0<t<1/3,
g,=iizoe3(,_,,3)od1, 1/3<1<2/3,
oyoh™lodyg_gmoheiied,, 2/3<t<1.

Observe that by the Mapping Replacement Theorem [5] we can (up to homo-
topy) assume y is an embedding so that g, (V) is indeed a copy of P,.
Conversely, suppose a Z-set X in Q has the property that M=Q—X is
n-tame at oo. Then we can find a sequence M=V, DM=V,DV,DV,D: -
of open subsets of M with compact complements and N0 V;= & such that
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for some sequence K,=point, K,, K; ..., where K,, K,, ... are n-dimensional
finite polyhedra, we can form a homotopy commutative diagram

Ve D Vye DVy D
N RN
N ¥ N\ ¥

K, «——K, <—- -

In the Appendix 1I of [6] it was shown that under these conditions there is
a proper homotopy equivalence Map (o) x Q—M, where o={K < K,< -}
Since both- M and Map (6) x Q are contractible Q-manifolds admitting boun-
daries (as defined in [6]) by [6, Theorems 7 and 9], M=Map(c)x @ and
Sh (lim 6 x Q) = Sh (lim 6) = Sh (X). But dim (lim 6)<<n so that Fd(X)<a.

(3.2) Remark. It is clear from the above proof that a Z-set X in a
Q-manifold Y has fundamental dimension <n if and only if X has arbitrary
small Q-manifold neighborhoods of the form Kx @ where K is an at most
n-dimensional finite complex. Also, had we assumed Fd(X)=n then, with the
notation from the second half of the proof for Theorem (3.1), dim (lim ¢) must

be equal n for otherwise M would be (n-1)-tame at o and thus Fd(X)<
<n—1, by the first half, which is a contradiction. Hence, we proved.

(3.3) Corollary. If X is a compactum and Fd(X)=n, then there is
an n-dimensional compactum Z such that Sh(X)=Sh(Z).

Corollary (3.3) was earlier proved by Holsztynski (unpublished) and
Nowak [9].

(3.4) Corollary. Let a compactum X quasi-dominates a compactum Y.
If X has fundamental dimension <n, then Y also has fundamental dimension < n.

Proof Combine Theorems (3.1) and (2.4) in ‘he present paper and
Theorem (2.6) from [4].

The geometric characterization of the fundamental dimension achieved
in Theorem (3.1) allows a simplification of some proofs from [9]. In this
paper we give an example (Proposition (3.5)); others are included in the
author’s dissertation.

S. Nowak [9] gave a rather complicated proof of the next proposition.
The proof we present shows some merits of our approach.

(3.5) Proposition. Let X,, X, be compacta. Then
Fd (X, UX,)<max (Fd(X,), Fd(X,), Fd(X,NXy)+1).

Proof Denote the integers appearing in the above inequality by k, I,
m, n, tespectively. Hence, we must prove k<<max(/, m, n). Consider X=X,
X, as a Z-set in Ox[—1, 1] with X,CQOx[-1, 0], X,CQx[0, /], and
XN(Q x{0})=X,=X,NX, being a Z-set in Q x{0}. Since Fd(X,)=1I, Fd(X,)=
=m, there are (se¢ Remark (3.2)) arbitrary small closed Q-manifold neigh-
borhoods N, of X, in Ox[—1, 0] and N, of X, in Qx[0, 1] such that
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N,=K;xQ, N,=K, xQ, where K, and K, are finite complexes of dimensions /
and m, respectively. Pick a closed Q-manifold neighborhood N,C N,NN, of X,
in Q x {0} chat is homeomorphic to K;xQ for some (n-1)-dimensional finite
complex K,. But N, is a Z-set submanifold in both N, and N, so that, by
Champan’s relative triangulation theorem [5], we can find complexes and ho-
meomorphisms 4, : N, —K{x Q, h,:N,—K3 xQ extending a fixed homeomorp-
hism #,: N,— K, x Q. Moreover, dim K{ =max(/, n) and dim K; =max (m, n).
Let NCN,UN, be any neighborhood of X for which NM(Qx{0})=N,, and
let K be the result of gluing Ki and K3 along K,. We claim that the inclu-
sion N—XC _, (N,\UN,)—X factors up to homotopy through K. To see this,
let A:Q@x[—1,11>0Qx[—1,1] move @ x[—1, 1] off of X with X, [ox;—1, 1p-N=
=id, for all t. Define a: N—X—>K by a=pohy|y_x, Where hy=(h|n~n,)U
Mhy|nAw,) and p is the projection Kx Q—K. Also B:K—(N,UN,)—X is
given by=)\lohﬁlo(x 0). One can easily chek that the diagram

N-XC___(NJUN)-X
A
« N B
K

homotopy commutes, which proves that (Q x[—1, 1])—X is max (/, m, n)-tame
at oo, ie., k<max(l, m, n).

(3.6) Remark. If X,=X,NX, has trivial shape, then we can take K,
to be a point and then Fd (X,\UJX,)=max (Fd(X,), (Fd (X,)) ([9, Theorem (4.19]).
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