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1. Introduction

C. Chou [4] has provided a characterization of the set of multipliers of
the space of almost convergent sequences. Subsequently, Duran [5] characterized
the multipliers as the intersection of the multipliers of the convergence domains
of all positive, strongly regular matrices. An open question is whether or not
the set of multipliers of the space of almost convergent sequences is the bounded
convergence domain of any conservative summability matrix. This question is
answered in the negative. The result is obtained as a consequence of the rela-
tionship between the multipliers and the important class of wedge spaces
introduced by Bennett [2].

2. Preliminaries

o denotes the space of all complex valued sequences, topologized by means
of coordinatewise convergence. A vector subspace of  is called a sequence
space. A sequence space E, with a locally convex topology, =, is a K space
provided that the inclusion mapping (E, T)— @ is continuous. In addition,
if v is complete and metrizable, then (E, 7) is an FK space. A normed FK
space is a BK space.

The following spaces will be used in the sequel:

m, the space of bounded sequences;

¢, the space of convergent sequences;

¢y, the space of null sequences;

ac, the space of almost convergent sequences;

ac,, the space of sequences that are almost convergent to 0.

Each of the above is a BK space when topologized by means of the norm

| il =sup [x,|.

The space of almost convergent sequences was introduced by Lorentz [8].
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Let e/ denote the sequence (0,..., 0,1,0,...) with a one in the j*
position; @ the linear span of the e/’s; m, the collection of sequences of zeros
and ones; and sp(m,) the linear span of m,.

A sequence space E is called solid (monotone) if the coordinatewise
product xy< E whenever x&Em (x&sp (m,)) and y&FE.

If (E, ) is a K space containing @ and ¢/ — 0 in 7, then (E, 1) is called
a wedge space [2].

x&E is said to have AK if P,(x) converges to x in 7, where

Pp(x)=73 x;¢.
j=0

If each x& F has AK, then (E, ) is an AK space.

If E, Fis a separated dual pair of vector spaces, then o (E, F) denotes
the weak topology on E by F, and ©(E, F) denotes the Mackey topology on
E by F (see, e.g., [12]).

If A=(a,) is an infinite matrix of complex numbers, Ax denotes the
sequence defined ay

(Ax)n: Apie Xgs n=0, 1, 2, e

k=0
The convergence domain of A, written (4), is {x&w:Axcc}.

The bounded convergence domain of A4 is mM(4). (A4) can be topologized
in such a way that it is a separable FK space [1, p. 199].

Definition 2.1, xEw is called strongly almost convergent to L if
{Ix;,— L[} is almost convergent to 0.

sac denotes the set of strongly almost convergent sequences. sac, denotes
the set of sequences that are strongly almost convergent to 0.

It’s easy to show that sac is a proper closed linear subspace of ac.
Furthermore, sac contains ¢, and sac, is solid.

3. The space sac

The following definition is taken from [11].

Definition 3.1: 4 set of positive integers, J, has t-density zero if the
characteristic function of J is almost convergent fo 0.

Chou’s result may be stated as

Theorem 3.2 [4]. xEw is a multiplier of ac if and only if there exists
a complex number L such that, for each €>0, {n:|x,— L|>¢} has t-density zero.

From Theorem 3.2 and definition 2.1, it is easy to see that x is a
multiplier of ac if and only if xEsac.

Proposition 3.3. sp(myNac,) is dense in sac,.

Proof. Let xCsac, and let €>0 be given. Let J={n:|x,/>¢<}. Define
y={»} bY Yi=Xu, n,<J. Then yCm.
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Choose z&sp(m,) such that

sup |y, — z | <e.
k

This is possible since sp (m,) is dense in m. Define w={w,} Esp (m,Mac,) by

w - [ n=n&J
* { 0 otherwise.
Then
sup | x, —w,|<e.
n Q.E.D.

Proposition 3.3 naturally raises the question: Is sp(m,Mac,) barrelled
in sac,? The answer is no. It is a consequence of Lorentz’s work on sum-
mability function [9, p. 312] that, if x&sp (myMac,), then

X
lim "—g" " -o.
e g 1

Define the matrix 4= (a,) by

1
Ay, = Vn +1
0 k>n.

(4) includes sp(m,Mac,), but not ¢, and, hence not sac, Since (4) is
an FK space, it follows from [3, Theorem 1] that sp (m,MNac,) is not barrelled
in sac,, We have the following result.

Theorem 3.4. If E is a separable FK space containing ¢, and sp (m,(M\ac,),
then F contains sac,.

Before proving Theorem 3.4, we establish a lemma.
I denotes {xCow: > |x <o}
k=0
Lemma 3.5: If {x"} is a sequence in I, then x™—>0 in o(l, c,+
+sp(myMacy)) implies that x* — 0 in o (I, sac,).

Proof: If xXW— 0 in o(/, c,+sp(myNacy)), then x*— 0 in o(l, ¢)
so that

[|x® | =sup 5 x| < co.
n k=0

Let y& sac, and let e>0 be given. From Proposition 3.3; there is
z&sp(myNac,) such that

sup Ve — 2zl <e.
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Choose N so that n> N implies

| 3 iz | <e
k=0
Then, if n>N,
| 2 XS] 3 X ez |+ 13 5Pz <el| x| +e,
k=0 k=0 k=0
Thus, x™— 0 in o (/, sacy).
Q.E.D.
Proof of Theorem 3.4: ¢,+sp(m,Nac,) is a monotone sequence

space. Thus I is o (/, ¢, +sp (myMac,)) sequentially complete [2, p. 55]. It follows
from [3, Theorem 5] that the inclusion mapping

(¢ +sp (myMiacy), = (c,+sp (myNacy), N)-+ E
is continuous.

sac, also has the property that [ is o (/, sac,) sequentially complete. Thus,
from Lemma 3.5, ¢ (/, sac,) and o (/, ¢ +sp(myMac,)) defines the same con-
vergent sequences and, hence, the same Cauchy sequences. It follows that the
two topologies define the same compact sets [7, p. 1010]. Thus the topology
(¢ +38p (myMacy), 1) is the restriction of 7 (sacy, ) to c,+sp (myMac,).

Let x&sac,. Since (sac,, t(sacy, I)) is an AK space [2, p. 54] {P,(x)} is
Cauchy in 7 (sacy, I). It follows that {P,(x)} is Cauchy in (c,+sp (myMacy),
T(¢y+5p (myNacy), I)). Thus {P,(x)} is Cauchy in E. Since E is a complete K
space, {P,(x)} must converge in E to x.

Q.E.D.

4. Relation to wedge spaces

Following Bennett [2, p. 51], we let r={r,} denote a non-decreasing,
unbounded sequence of positive integers with ro=1. If x&w, let ¢,(x) denote
the number of non-zero terms in {x,, ..., x,} for each n=0, 1, 2, ....

If E is a sequence space, we write

Er={yCo: 3 |Xy.|< o VxEE}.
n=0

Define
(myMacy, r)={x&myNac,:c,(x)<r,, n=0,1,...}.

Note that sp(m,Mac, r) is a monotone sequence space. Denote
sp(myMacy, r) by M, (r).

Lemma 4.1. (M,(r), t(M,(r), M2 (r))) is a wedge space.

Proof. The proof is similar to that of Theorem 2 of [2].
Suppose that (M, (r), T(M,(r), M2 (r))) is not a wedge space. There is
a neighborhood of zero, U, and an infinite set J of positive integers such that

eEU, jeJ.
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From J, select an infinite subset, J,, of t-density zero such that for each
positive integer n, the number of elements of J, between 0 and » is less than
or equal to r,

Define x& M, (r) by

xj=[ 1 J <4
0 j&d,.

Since (M, (r), ©(M,(r), M*(r))) is an AK space [2, p. 54], P,(x)— x.
This implies ¢/ — 0, (j— o0, j&J,) which is a contradiction.
Q.E.D.

Theorem 4.2. If E is a separable FK space containing M (r) for some
r={r,}, then E is a wedge space.

Proof. The inclusion mapping
(M, (r), =(My(r), M*(r))— E

is continuous because M*(r) is o (M *(r), M,(r)) sequentially, complete ([2,
p. 55] and [3, Theorem 5J]). The result now follows from Lemma 4.1.

Q.E.D.

Remarks. It is a consequence of [2, Theorem 1] that any wedge FK
space must contain M, (r) for some r. Thus Theorem 4.2 characterizes sepa-
rable wedge FK spaces.

As a consequence of Theorem 4.2, we obtain the result that sac is not
the bounded convergence domain of any conservative summability matrix.

Corollary 4.3. If {4} is a countable collection of matrices such
that each (A,) includes sac,, then there is a bounded, not almost convergent,
sequence which is limited by every A,.

Proof. Since (d4,) is a separable FK space, the hypothesis and
Theorem 4.2 imply that each (4,) is a wedge space. The result now follows
from [2, p. 54 and p. 60].

Q.E.D.

Theorem 4.2 also yields the following improvement to [2, Corollary to
Theorem 3].

Corollary 44. If E is a separable FK space and F is a wedge FK
space such that E contains F(\sac, then E is a wedge space.

5. Matrix transformations on sac

In this section we characterize those matrices which map sac to sac.

Theorem 5.1. Let A=(a,) be an infinite matrix of complex numbers.
Ax csac whenever x<sac if and only if

(@) [[4[l=sup > |a,|<oo;
e " .j=0 . -]
(i) For each j=0, 1, 2, ..., there exists a; such that {a,,j—aj},,=06sac0;
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(i) S laj<oo;
j=0

oo

@iv) {% a,,j} &sac;, and
j=0

n=0

(v)  Fox each set J of positive integers of © density zero
{ Z Ay — aj},:LOEsaco.
jed

Proof. (Necessity) Condition (i) follows because 4 maps ¢, to m,
Condition (ii) and (iv) are obvious, [10, Theorem 1.3.2].

To establish the necessity of (iii), we note that [8, p. 198]

la;{<sup |a,|.
Thus, for each k=0, 1, 2, ...

fajKS‘;P.

J

k N
g | <[ A]]-
J =0

Ve

Let J={ i, ji, ...} be an infinite set of positive integers of v density zero.
Define the matrix B=(b,,) by

bnkzan,jk'
B maps m to sac and, hence, B maps m to ac. By a results of Duran

[6, p. 77], for each xC&m the almost convergent limit of Bx is > @, X;. De-

fine Y& sac, by

y.={xk J=Jk
710 otherwise.

It follows that Ay is strongly almost convergent to > 4, %, thus estab-
lishing the necessity of (v). k=0

(Sufficiency): Let xsac,. Let >0 be given and choose zezsp (myNMacy)
such that
Sup |x; —z, | <e.
k

Let z= % b;y®, where each b, is a scalar and each ye&myMac, For
each i=0, 1, .l.f), r, let J; be the set of positive integers of © density zero
such that
o_[1 JEJ
! [0 JE T,

Then

oo

| S @y—a)x 2] 4] et 3| S ay-q

j=0 =0 jEJi



Strongly Almost Convergent Sequences 265
From Condition (v), there exists a positive integer P such that, if p> P,
1 E = | g SO
— 212 @nig @) 5[ <2{A][e+e 3 [b]
p+1 "0 Do i—0

uniformly in n=0, 1, 2, ... . Thus 4 maps sac, to sac.

The proof is completed by observing that, if y—sac, then y=rle-t x
where x&sac,, L is the strong almost convergent limit of y, and e={l; 1 i

L il

3

Q.E.D.

Remark. The proof of Theorem 5.1 shows that, if X sac,, then Ax
is strongly almost convergent to > a;x;.
i=0
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