(F, F)- AND (F, F)-CONNEXIONS OF AN ALMOST COMPLEX AND AN ALMOST PRODUCT SPACE

M. Prvanović

(Received March 7, 1977)

1. Introduction. — In an almost complex space an affine connexion is called F-connexion if the almost complex structure tensor F_j^i is covariant constant with respect to this connexion. The general F-connexion has the form ([1], chapter VI, § 2):

(1.1)
$$\Gamma_{ji}^{k} = \overset{\circ}{\Gamma}_{ji}^{k} - \frac{1}{2} \left(\overset{\circ}{\nabla}_{j} F_{i}^{a} \right) F_{a}^{k} + \frac{1}{2} \left(\delta_{i}^{a} \delta_{b}^{k} - F_{i}^{a} F_{b}^{k} \right) W_{ja}^{b},$$

where W_{ka}^b is an arbitrary tensor of the type indicated by the indices, and $\overset{\circ}{\nabla}$ denotes the covariant differentiation with respect to the symmetric affine connexion $\overset{\circ}{\Gamma}_{ii}^k$.

Similarly, the general connexion in the almost product space with respect to which the almost product structure F_i^i is covariant constant, has the form:

(1.2)
$$\Gamma_{ji}^{k} = \mathring{\Gamma}_{ij}^{k} + \frac{1}{2} (\mathring{\nabla}_{j} F_{i}^{a}) F_{a}^{k} + \frac{1}{2} (\delta_{i}^{a} \delta_{b}^{k} + F_{i}^{a} F_{b}^{k}) W_{ja}^{b}.$$

If we put

(1.3)
$$F_a^i F_j^a = \omega \delta_j^i, \qquad \omega = +1 \quad \text{or} \quad \omega = -1,$$

and if the operators O and *O are defined by ([1]):

(1.4)
$$\begin{cases} O_{ir}^{sh} = \frac{1}{2} \left(\delta_i^s \, \delta_r^h + \omega F_i^s \, F_r^h \right), \\ *O_{ir}^{sh} = \frac{1}{2} \left(\delta_i^s \, \delta_r^h - \omega F_i^s \, F_r^h \right), \end{cases}$$

the equations (1.1) and (1.2) can be written in the from:

(1.5)
$$\Gamma_{ji}^{k} = \mathring{\Gamma}_{ji}^{k} + \frac{1}{2} \omega (\mathring{\nabla}_{j} F_{i}^{a}) F_{a}^{k} + O_{ib}^{ak} W_{ja}^{b}.$$

In (1.3), (1.4) and (1.5), $\omega = -1$ if the space is an almost complex space, and $\omega = +1$ if the space is an almost product space.

The connexion (1.5) being non-symmetric, we can consider four kinds of the covariant derivatives. These covariant derivatives, of a tensor a_j^i for example, are given by:

$$\nabla_{k} a_{j}^{i} = \frac{\partial a_{j}^{i}}{\partial x^{k}} + a_{j}^{p} \Gamma_{pk}^{i} - a_{p}^{i} \Gamma_{jk}^{p},$$

$$\nabla_{k} a_{j}^{i} = \frac{\partial a_{j}^{i}}{\partial x^{k}} + a_{j}^{p} \Gamma_{kp}^{i} - a_{p}^{i} \Gamma_{kj}^{p},$$

$$\nabla_{k} a_{j}^{i} = \frac{\partial a_{j}^{i}}{\partial x^{k}} + a_{j}^{p} \Gamma_{pk}^{i} - a_{p}^{i} \Gamma_{kj}^{p},$$

$$\nabla_{k} a_{j}^{i} = \frac{\partial a_{j}^{i}}{\partial x^{k}} + a_{j}^{p} \Gamma_{kp}^{i} - a_{p}^{i} \Gamma_{kj}^{p},$$

$$\nabla_{k} a_{j}^{i} = \frac{\partial a_{j}^{i}}{\partial x^{k}} + a_{j}^{p} \Gamma_{kp}^{i} - a_{p}^{i} \Gamma_{jk}^{p}.$$

The connexion (1.5) is the general connexion satisfying the condition $\nabla_k F_j^i = 0$. In § 2 we shall discuss the possibility of finding the (F, F)-connexion, i.e. the general affine connexion Γ_{ji}^k such that

and in § 3 the possibility of finding the (F, F)-connexion, i.e. the general affine connexion Γ_{ji}^{k} such that

In §4 we shall show that (F, F)-connexion is, under some conditions, Rizza's ρ_+ -connexion and (F, F)-connexion is, under some conditions, Rizza's ρ_- -connexion ([2], [3]) and conversely.

2.
$$(\overset{1}{F},\overset{2}{F})$$
-connexion. — Putting

(2.1)
$$\Gamma_{ji}^k = \mathring{\Gamma}_{ji}^k + U_{ji}^k,$$

where

(2.2)
$$U_{ji}^{k} = \frac{1}{2} \omega \left(\mathring{\nabla}_{j} F_{i}^{a} \right) F_{a}^{k} + O_{ib}^{ak} W_{ja}^{b},$$

we have

Thus, the condition (1.6) can be written in the form:

$$F_j^p(U_{kp}^i-U_{pk}^i)-F_p^i(U_{kj}^p-U_{jk}^p)=0$$
,

and consequently

$$(U_{ka}^p - U_{ak}^p) * O_{ni}^{iq} = 0.$$

1 2 3 4 (F, F)- and (F, F)-connexions of an almost complex and an almost product space

Substituting (2.2) into this equation, we get

$$\left[\frac{1}{2}\omega(\mathring{\nabla}_{k}F_{q}^{a})F_{a}^{p}+O_{qb}^{ap}W_{ka}^{b}-\frac{1}{2}\omega(\mathring{\nabla}_{q}F_{k}^{a})F_{a}^{p}-O_{kb}^{ap}W_{qa}^{b}\right]*O_{pj}^{iq}=0.$$

Taking into account that $O_{ab}^{ap} \cdot *O_{pj}^{iq} = 0$, the last equation reduces to

$$\left[\frac{1}{2}\omega(\mathring{\nabla}_{k}F_{q}^{a})F_{a}^{p}-\frac{1}{2}\omega(\mathring{\nabla}_{q}F_{k}^{a})F_{a}^{p}-O_{kb}^{ap}W_{qa}^{b}\right]*O_{pj}^{iq}=0.$$

Using Yano's lemma ([1], p. 133), we have

$$\frac{1}{2} \omega (\mathring{\nabla}_{k} F_{q}^{a}) F_{a}^{p} - \frac{1}{2} \omega (\mathring{\nabla}_{q} F_{k}^{a}) F_{a}^{p} - O_{kb}^{ap} W_{qa}^{b} = O_{qb}^{ap} V_{ka}^{b}.$$

 V_{ka}^{b} being an arbitrary tensor, we can put

$$V_{ka}^b = -W_{ak}^b$$

Thus we obtain:

$$(\mathring{\nabla}_{k}F_{q}^{a} - \mathring{\nabla}_{q}F_{k}^{a}) F_{a}^{p} - (W_{qa}^{b} F_{k}^{a} - W_{ak}^{b} F_{q}^{a}) F_{b}^{p} = 0.$$

Contraction by $F_p^i F_j^k$ gives

(2.3)
$$*O_{qj}^{ab}W_{ab}^{i} = \frac{1}{2}\omega(\mathring{\nabla}_{a}F_{q}^{i} - \mathring{\nabla}_{q}F_{a}^{i})F_{j}^{a}.$$

The equation (2.3) admits a solution, by virtue of the Yano's lemma ([1], p. 133), if and only if:

$$O_{qj}^{ab} (\overset{\circ}{\nabla}_t F_a^i - \overset{\circ}{\nabla}_a F_t^i) F_b^i = (\overset{\circ}{\nabla}_a F_q^i - \overset{\circ}{\nabla}_a F_a^i) F_j^a - (\overset{\circ}{\nabla}_a F_j^i - \overset{\circ}{\nabla}_i F_a^i) F_q^a = N_{jq}^i = 0,$$

i.e. iff the structure is integrable. Then the general solution of (2.3) is given by

(2.4)
$$W_{ja}^{b} = \frac{1}{2} \omega \left(\mathring{\nabla}_{t} F_{j}^{b} - \mathring{\nabla}_{j} F_{t}^{b} \right) F_{a}^{t} + O_{ja}^{rs} A_{rs}^{b},$$

where A_{rs}^{b} is an arbitrary tensor.

Substituting (2.4) into (1.5), we have

$$\Gamma_{ji}^{k} = \overset{\circ}{\Gamma}_{ji}^{k} + \frac{1}{2} \omega \left(\overset{\circ}{\nabla}_{j} F_{i}^{a} \right) F_{a}^{k} + \frac{1}{2} \omega O_{ib}^{ak} \left(\overset{\circ}{\nabla}_{t} F_{j}^{b} - \overset{\circ}{\nabla}_{j} F_{i}^{b} \right) F_{a}^{t} + O_{ib}^{ak} A_{ja}^{rs} A_{rs}^{b},$$

or

(2.5)
$$\Gamma_{ji}^{k} = \mathring{\Gamma}_{ji}^{k} + \frac{1}{4} \omega \left[(\mathring{\nabla}_{a} F_{j}^{k} - \mathring{\nabla}_{j} F_{a}^{k}) F_{i}^{a} + (\mathring{\nabla}_{i} F_{j}^{a} + \mathring{\nabla}_{j} F_{i}^{a}) F_{a}^{k} \right] + A_{ji}^{k} + \omega A_{ai}^{b} F_{j}^{a} F_{b}^{k} + \omega A_{ja}^{b} F_{i}^{a} F_{b}^{k} + \omega A_{ab}^{k} F_{j}^{a} F_{b}^{b}.$$

 $\left(A_{ji}^{k} \text{ being arbitrary, we have put } A_{ji}^{k} \text{ instead of } \frac{1}{4} A_{ji}^{k}\right)$

Let T_{ji}^k be the torsion tensor of the connexion

(2.6)
$$\mathring{\Gamma}_{ji}^{k} + \frac{1}{4} \omega \left[(\mathring{\nabla}_{a} F_{j}^{k} - \mathring{\nabla}_{j} F_{a}^{k}) F_{i}^{a} + (\mathring{\nabla}_{i} F_{j}^{a} + \mathring{\nabla}_{j} F_{i}^{a}) F_{a}^{k} \right].$$

Then

$$T_{ji}^k = \frac{1}{4} \omega \left[(\mathring{\nabla}_a F_j^k - \mathring{\nabla}_j F_a^k) F_i^a - (\mathring{\nabla}_a F_i^k - \mathring{\nabla}_i F_a^k) F_j^a \right] = \frac{1}{4} \omega N_{ij}^k = O,$$

i.e. (2.6) is a symmetric connexion. It will be easily verified that (2.6) is an F-connexion. Thus we can consider, instead of (2.5), the connexion

(2.7)
$$\Gamma_{ji}^{k} = \mathring{\Gamma}_{ji}^{k} + A_{ji}^{k} + \omega A_{ai}^{b} F_{j}^{a} F_{b}^{k} + \omega A_{ja}^{b} F_{i}^{a} F_{b}^{k} + \omega A_{ab}^{k} F_{j}^{a} F_{i}^{b},$$

where $\mathring{\Gamma}_{ji}^k$ is a symmetric F-connexion and A_{ji}^k is an arbitrary tensor.

Thus we have the theorem:

In order that in an almost complex space or in an almost product space there exists a (F, F)-connexion, it is necessary and sufficient that the structure be integrable. Then the general (F, F)-connexion has the form (2.7).

3. (F, F)-connexion. — An arbitrary affine connexion may be written as $\Gamma_{ii}^{k} = \mathring{\Gamma}_{ii}^{k} + A_{ii}^{k},$

where $\overset{\circ}{\Gamma}_{ji}^{k}$ is a symmetric affine connexion, and A_{ji}^{k} is an arbitrary tensor. Then

$$\overset{3}{\nabla_k}F^i_j = \overset{\circ}{\nabla}_k F^i_j + F^p_j A^i_{pk} - F^i_p A^p_{kj},$$

and the condition $\overset{3}{\nabla}_k F_j^l = 0$ is equivalent to

(3.2)
$$F_{j}^{p}A_{pk}^{i} - F_{p}^{i}A_{kj}^{p} + \overset{\circ}{\nabla}_{k}F_{j}^{i} = 0.$$

Transvecting (3.2) with F_i^j and with F_i^t , we find respectively

(3.3)
$$\omega A_{ka}^b F_j^a F_b^i = A_{jk}^i + \omega (\mathring{\nabla}_k F_a^i) F_j^a,$$

(3.4)
$$\omega A_{ak}^b F_j^a F_b^i = A_{kj}^i - \omega \left(\stackrel{\circ}{\nabla}_k F_j^a \right) F_a^i.$$

Multiplying (3.3) by $F_r^j F_s^k$, we obtain

$$A_{kr}^{b}F_{b}^{i}F_{s}^{k} = A_{ik}^{i}F_{r}^{j}F_{s}^{k} + (\mathring{\nabla}_{a}F_{r}^{i})F_{s}^{a}.$$

Substituting (3.4) into this equation, we have

(3.5)
$$\omega A_{ba}^i F_k^b F_j^a = A_{kj}^i - \omega (\overset{\circ}{\nabla}_k F_j^a) F_a^i - \omega (\overset{\circ}{\nabla}_a F_k^i) F_j^a,$$
 and consequently

$$\frac{1}{2}A_{ba}^{i}*O_{kj}^{ba}=\omega\left[\left(\overset{\circ}{\nabla}_{k}F_{j}^{a}\right)F_{a}^{i}+\left(\overset{\circ}{\nabla}_{a}F_{k}^{i}\right)F_{j}^{a}\right].$$

(F, F)- and (F, F)-connexions of an almost complex and an almost product space 227

This equation admits, by the mentioned lemma ([1), p. 133), the solution if and only if

$$[(\overset{\circ}{\nabla}_{k}F_{j}^{a})F_{a}^{i}+(\overset{\circ}{\nabla}_{a}F_{k}^{i})F_{j}^{a}]O_{rs}^{kj}=0,$$

i.e. if and only if

(3.6)
$$(\mathring{\nabla}_{a}F_{r}^{i} - \mathring{\nabla}_{r}F_{a}^{i})F_{s}^{a} - (\mathring{\nabla}_{a}F_{s}^{i} - \mathring{\nabla}_{s}F_{a}^{i})F_{r}^{a} = N_{sr}^{i} = 0.$$

This condition shows that the structure F_j^i must be integrable. Combining (3.3), (3.4) and (3.5), we get

$$4 A_{kj}^{i} - 2 \omega (\mathring{\nabla}_{k} F_{j}^{a}) F_{a}^{i} + \omega (\mathring{\nabla}_{j} F_{a}^{i}) F_{k}^{a} - \omega (\mathring{\nabla}_{a} F_{k}^{i}) F_{j}^{a} =$$

$$= A_{kj}^{i} + \omega A_{ja}^{b} F_{k}^{a} F_{b}^{i} + \omega A_{ak}^{b} F_{j}^{a} F_{b}^{i} + \omega A_{ba}^{i} F_{k}^{b} F_{j}^{a},$$

i.e.

$$\begin{split} A_{kj}^{i} &= \frac{1}{4} \left(A_{kj}^{i} + \omega A_{ja}^{b} F_{k}^{a} F_{b}^{i} + \omega A_{bk}^{a} F_{j}^{b} F_{a}^{i} + \omega A_{ba}^{i} F_{k}^{b} F_{j}^{a} \right) + \\ &+ \frac{\omega}{2} \left(\mathring{\nabla}_{k} F_{j}^{a} \right) F_{a}^{i} - \frac{\omega}{4} \left(\mathring{\nabla}_{j} F_{a}^{i} \right) F_{k}^{a} + \frac{\omega}{4} \left(\mathring{\nabla}_{a} F_{k}^{i} \right) F_{j}^{a}. \end{split}$$

Substituting this into (3.1), we find

$$\Gamma_{kj}^{i} = \mathring{\Gamma}_{kj}^{i} + \frac{\omega}{2} (\mathring{\nabla}_{k} F_{j}^{a}) F_{a}^{i} - \frac{\omega}{4} (\mathring{\nabla}_{j} F_{a}^{i}) F_{k}^{a} + \frac{\omega}{4} (\mathring{\nabla}_{a} F_{k}^{i}) F_{j}^{a} + A_{kj}^{i} + \omega A_{ja}^{b} F_{k}^{a} F_{b}^{i} + \omega A_{bk}^{a} F_{j}^{b} F_{a}^{i} + \omega A_{ba}^{i} F_{k}^{b} F_{j}^{a},$$

where $\mathring{\Gamma}_{kj}^{l}$ is a symmetric connexion satisfying (3.6) and where we have put, A_{ji}^{k} being arbitrary, A_{ji}^{k} instead of $\frac{1}{4}A_{ji}^{k}$.

Let us consider the connexion

(3.8)
$$\mathring{\Gamma}_{kj}^{i} + \frac{\omega}{2} (\mathring{\nabla}_{k} F_{j}^{a}) F_{a}^{i} - \frac{\omega}{4} (\mathring{\nabla}_{j} F_{a}^{i}) F_{k}^{a} + \frac{\omega}{4} (\mathring{\nabla}_{a} F_{a}^{i}) F_{j}^{a}.$$

It is an F-connexion, and its torsion tensor

$$\frac{\omega}{4} \left[(\mathring{\nabla}_a F_k^i - \mathring{\nabla}_k F_a^i) F_j^a - (\mathring{\nabla}_a F_j^i - \mathring{\nabla}_j F_a^i) F_k^a \right] = \frac{\omega}{4} N_{jk}^i$$

vanishes. This means that we can consider, instead of (3.7), the connexion

(3.9)
$$\Gamma_{kj}^{i} = \mathring{\Gamma}_{kj}^{i} + A_{ki}^{i} + \omega A_{ba}^{b} F_{b}^{i} F_{k}^{a} + \omega A_{ba}^{a} F_{b}^{i} F_{a}^{i} + \omega A_{ba}^{i} F_{b}^{b} F_{i}^{a},$$

where $\overset{\circ}{\Gamma}_{ki}^{i}$ is a symmetric *F*-connexion.

In exactly the same way we can prove that (3.9) is the general connexion satisfying the condition $\nabla_k F_j^i = 0$ too. Thus we have the theorem:

In order that in an almost complex space or in an almost product space there exists a (F, F)-connexion, it is necessary and sufficient that the structure be integrable. Then the general (F, F)-connexion has the form (3.9).

4. Rizza's ρ_+ - and ρ_- -connexions. — G. B. Rizza ([2]) defined ρ_+ - and ρ_- -connexion in an almost complex space in the following manner.

We can consider, in the tangent space at each point of the manifold with an almost complex structure F_i^i , the transformations:

$$(4.1) J_{\varphi}: J_{\varphi}(U^{i}) = U^{i}\cos\varphi + F_{a}^{i}U^{a}\sin\varphi (0 \leqslant \varphi \leqslant 2\pi).$$

The torsion of a non-symmetric connexion is the skew-symmetric tensor. Conversely, every skew-symmetric tensor S_{ij}^k can be considered as the torsion tensor of a non-symmetric connexion. Let us put

(4.2)
$$\Omega^{k}(U, V) = -2 S_{ij}^{k} U^{i} V^{j},$$

where U and V are linearly independent vectors. Applying to U and V the transformation J_{φ} , we may construct the corresponding vector (4.2):

$$\Omega^k(J_{\varphi}U,J_{\varphi}V)=-2S_{ij}^kJ_{\varphi}(U^i)J_{\varphi}(V^i).$$

On the other hand, we can apply the transformation J_{φ} to the vector $\Omega^k(U, V)$. G. B. Rizza discusses ([2], [3]) the possibility of finding a skew-symmetric tensor S_{ij}^k such that

(4.3)
$$\Omega^k(J_{\varphi}U, J_{\varphi}V) = J_{\psi}\Omega^k(U, V)$$

for arbitrary vectors U, V and where ψ is a function of φ . He showed that

$$either \;\; \psi = +\, 2\, \phi, \quad or \quad \psi = -\, 2\, \phi, \quad or \quad \psi = 0.$$

The connexion whose torsion tensor satisfies (4.3) such that $\psi=+2\,\phi$ is called an ρ_+ -connexion. The general ρ_+ -connexion has the form ([3]):

(4.4)
$$\Gamma_{ij}^{k} = \overset{\circ}{\Gamma}_{ij}^{k} + A_{ij}^{k} + \omega A_{aj}^{b} F_{i}^{a} F_{k}^{b} + \omega A_{ia}^{b} F_{j}^{a} F_{b}^{k} + \omega A_{ab}^{k} F_{i}^{a} F_{k}^{b},$$

where $\omega = -1$, $\overset{\circ}{\Gamma}{}_{ij}^{k}$ is an arbitrary symmetric connexion and A_{ij}^{k} is an arbitrary skew-symmetric tensor.

The connexion whose torsion tensor satisfies (4.3) such that $\psi=-2\,\phi$ is called an ρ -connexion. The general ρ -connexion has the form ([3]):

(4.5)
$$\Gamma_{ij}^{k} = \overset{\circ}{\Gamma}_{ij}^{k} + A_{ij}^{k} + \omega A_{ai}^{b} F_{j}^{a} F_{b}^{k} + \omega A_{ja}^{b} F_{i}^{a} F_{b}^{k} + \omega A_{ab}^{k} F_{i}^{a} F_{j}^{b},$$

where ω , $\overset{\circ}{\Gamma}_{ii}^{k}$ and A_{ii}^{k} have the same meaning as before.

To define ρ_+ - and ρ_- -connexion in an *n*-dimensional almost product space, we first remember that the structure tensor F_i^j of a such space defines two complementary distributions in the *n*-dimensional tangent plane at each point of the space. Let us suppose that the vector U does not belong to either of these distributions. Then U^i and $F_a^i U^a$ are linearly independent vectors and we can consider, instead of (4.1), the transformations:

(4.6)
$$J_{\varphi}: J_{\varphi}(U^{i}) = U^{i} \operatorname{ch} \varphi + F_{a}^{i} U^{a} \operatorname{sh} \varphi.$$

Supposing that the vector (4.2) does not belong to either of distributions, we may consider the vector $J_{\psi}\Omega^{k}(U, V)$ and then also the condition (4.3), where U and V are linearly independent vectors.

The connexion in an almost product space whose torsion tensor satisfies (4.3) for arbitrary vectors U, V (where J_{φ} is the transformation (4.6)), such that $\psi = +2 \varphi$ is called an ρ_+ -connexion, and that whose torsion tensor satisfies (4.3) such that $\psi = -2\varphi$ is called an ρ -connexion. In exactly the same way as in [2] and [3], we obtain that the general ρ_+ -connexion in an almost product space has the form (4.4) (where $\omega = +1$), and the general ρ -connexion has the form (4.5) ($\omega = +1$).

Comparing (4.4) and (2.7), (4.5) and (3.9), we see that:

 $(\dot{F}, \, \ddot{F})$ -connexion (2.7) in a complex space (in a product space) where arbitrary tensor A_{jk}^{i} is skew-symmetric is an ρ_{+} -connexion. Conversely, an ρ_{+} --connexion (4.4) where $\overset{\circ}{\Gamma}^k_{ij}$ is a symmetric F-connexion, is an $\overset{1}{(F,F)}$ -connexion.

(F, F)-connexion (3.9) in a complex (in a product) space, where A^i_{jk} is an arbitrary skew-symmetric tensor, is an ρ _connexion. Conversely, an ρ _-connexion (4, 5), where $\mathring{\Gamma}^i_{jk}$ is a symmetric F-connexion, is an (F, F)-connexion.

The ρ_+ - and ρ_- -connexions in an almost product space cannot be determined if the vector (4.2) belongs to one of the distributions. Thus, we have yet to determine, in the case $\omega = +1$, the condition satisfied by torsion tensor S_{jk}^{i} , if the vector (4.2) belongs to one of the distributions.

If the vector W belongs to one of the distributions then either $W^i = F_a^i W^a$ or $W^i = -F_a^i W^a$. This means, in the case of the vector $S_{jk}^i U^j V^k$, that

$$S^i_{jk} U^j V^k = \pm F^i_a S^a_{jk} U^j V^k$$

for every pair U, V. Consequently

$$S_{ik}^i = \pm F_a^i S_{ik}^a.$$

This is the required condition.

REFERENCES

- [1] K. Yano, Differential Geometry on complex and almost complex spaces, Pergamon press, 1965.
- [2] G. B. Rizza, Sulle connessioni di una varietà quasi complessa, Annali di Matematica pura ed applic. (4), vol. 68, pp. 233—254, Bologna, 1965.
- [3] G. B. Rizza, Teoremi di rappresentazione per alcune classi di connessioni su di una varietà quasi complessa, Rend. Ist. di Matem. Univ. di Trieste, vol 1, fasc. 1 (1969), pp. 9-25.

Author's address: Institut Mathématique Knez Mihailova 35 11000 Belgrade Yugoslavia