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Summary

In the course of an attempt to unify and extend certain results due to
T. M. MacRobert [2], K. C. Sharma [3], H. M. Srivastava and J. P. Singhal [4],
and R. Y. Denis [1], an infinite integral is evaluated in terms of the H-function
of several variables, which was defined and studied in the recent papers [5]
and [6]. A further multiple-integral generalization of this result is also given.

1. Introduction

Following the notation explained fairly fully in our earlier paper [6], let
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denote the H-function of n complex variables z, ..., z, (see also [5], p- 271
et seq.). Also, let the associated positive numbers
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Then it is known that the multiple Mellin-Barnes contour integral [5, p.
271, Eq. (4.1)] defining the function (1.1) would converge absolutely when

(1.5) !arg(z,.)|<—;—./\,-7t, i=1,...,n

it being understood that the points z,=0, i=1, ..., n, are excluded, and that
(cf. [6], p. 122, Eq. (1.16)) ’
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where, with i=1, ..., n,
a=dP3P, j=1,..., 40,
g:i=01 ~ b, j=1, ...,V

The main result of the present paper is the following infinite integral:
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where p;>0;>0, i=1,...,n, and «; and B; are given by (1.7).
We also give an analogue of our integral formula (1.8) in terms of mul-
tiple integrals.
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2. Evaluation of (1.8)

Our derivation of the integral formula (1.8) makes use of the following
well-known integral:
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which holds when Re(B)>Re(«)>0. Indeed, we first replace the multiple
H-function in the integrand of (1.8) by its Mellin- Barnes contour integral [5, p.
271, Eg. (4.1)], and change the order of integration, which is permissible
under the conditions stated with (1.8). We then evaluate the innermost x-integ-
ral by applying (2.1), and interpret the resulting multiple contour integral as
an H-function of several variables. The final result (1.8), together with the
aforementioned conditions of its convergence, will follow from the asymptotic
expansions given by (1.6) above.

3. Extensions and particular cases

By setting each of the positive coefficients in (1.2) equal to 1, our
integral formula (1.8) can easily be rewritten in terms of the G-function of
several variables. Thus, for n=1, our result (1.8) would provide a generali-
zation of the integral formulas involving E and G functions, given earlier by
MacRobert [2] and Sharma [3], respectively. On the other hand, for n=2, it
would yield (as special cases) the integrals involving the G-function of two
variables evaluated by Srivastava and Singhal [4], and subsequently also by
Denis [1]. We choose to omit the details of these and several other interesting
specializations of our result (1.8).

Next we consider the special case of our integral (1.8) when A=C=0.
In this case the multiple H-function on the left-hand side would reduce to the
product of n H-functions of different arguments, and our result would evi-

dently yield a formula for the corresponding infinite integral involving the
product of several H-functions.

Finally, we remark that the method of derivation of the integral formula
(1.8) can be applied to obtain the following multiple-integral analogue:
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o; and B; being given by (1.7).
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