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RELATIVISTIC RELATIVE DEFORMATION AND VORTICITY
APPLIED TO MAGNETOHYDRODYNAMICS

1. Lukacevié

(Communicated March 2, 1977)

This paper is related to the same subject as [11], with applications to MHD.
Some of previous results are completed and an error corrected.

The first part of the paper is limited to kinematics, deformation being
formulated by means of two congruences of timelike curves in spacetime. One
of these congruences represents the stream lines of a material continuum, the
other one can be understood as the system of world lines corresponding to
the proper time of a galileian observer in Special Relativity, or to the coordi-
nate time in General Relativity. These limitations are given only as examples.
Several particular cases are then considered, for which relative deformation
becomes purely spatial, and two or three dimensional; relations are obtained
which “propagate” that state of deformation in spacetime.

In the second part an application is made, of the preceding, to a MHD
fluid, given only through its stream lines and its magnetic field. Then a vorti-
city vector is also considered, coupled with the electric current. We point out
the fact that no tensor of energy is used. Some properties of quadratic first
invariants are obtained in the third part.

Some of the papers given in the references are not explicitly quoted in
the text, but they were in our previous papers, or are generally related to

the same subject.
*®

* *

Relative deformation, or quasideformation (as we called it throughout
the preceding paper [11], in a material continuum given only through a con-
gruence of timelike streamlines, with tangent unit four velocities u* i spacetime V,of
signature (+, +, 4, —), was defined simply by the Lie (or convective) deri-
vative of the projecting tensor A, of that continuum, with respect to another
congruence of timelike curves, with unit four velocities £*:

Vag = o2 hap = L (8up -+ o Ug) =

(1.1)
=Va£3+VBEquumEYVYug+u5EYVYua+uauYVBEY+uBuYV“EY.
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All the considered quantities must be at least second order derivable.
Let us remark immediately that for £*=u* obtained tensor differs slightly
from the traceless shear tensor (cf Ehlers [4]) 6,5 which has an additional

1 . . .
term ——g—VYuYhaB, but this is not essential, as was already pointed out

in [I1]. The proper deformation tensor, without that additional term, repre-
sents, in fact, the departure from Born’s rigidity.

1) We shall make next assumption concerning relative deformation:
Tensor v,g allows a real timelike eigenvector {*. It must have, therefrom, not
only another real eigenvalue, but all the remaining three, with corresponding
spacelike eigenvectors. That is the consequence of the symmetry of v,g and the
definiteness of spacelike metric (cf Synge [2]).

Tensor v,g satisfies identically the condition:
(12) Vap u* u5=0.

As a consequence of assumption 1) we can reduce it, with respect to
its local principal frame, to diagonal form v,s (with v; for spacelike axes,
and v, for timelike one). If we denote the eigenvectors of that tensor by

Ly (y=1, 2, 3, 4), the fourth being timelike:

(1.3) Vg C?Y) = Senas
we shall have, in the principal frame:

Vi=np> Vag=—MNg-
Therefrom:
(1.2 iy () 4 v,, (W2 + V33 (u3)* + v, (= 0.

The above quadratic form is satisfied by values of #* symmetric with
respect to its L@ principal axis, being so timelike. So that local hypercone
has not only one timelike axis, but essentially timelike directions among its
generatrices. In the special case when all the vectors 9, satisfying a relation
of the (1.2') form, are timelike, that hypercone is directed by a spacelike
ellipsoid. Its half-cones contain corresponding branches of hyperbolae for approp-
riate values of constants

Ve 9% 88 = const

and there are external hyperbolae for values of constants with opposite sign,
the two families being separated by asymptotic hypersurface (1.2°). It results
from relation (1.2) that under condition 1) a cone with real axes exists, con-
taining necessarily timelike vectors, among which %, but with the possibility
of other kinds of generatrices. The same holds for the families of hyperbolae.

We considered in [11] also a spacelike tensor 7,5, defined by:
g = Vo5 g g = (Vo B + V5 £y) Y By =
(1.4) =Vuba+Valyt+ugut Vybg+ugur Vo &, +u, ur Vg &y +
+ugu¥ Vo &y + 2u, ug u? ub Vy Es.

}
{
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Let us form the above projections in the local principal frame of v,g.
These are:

T =V [L+ 2], Taa=va [1—2 ()],
Ty=uit (Vi V), T =iy (Vi Vy,).

(1.4

We see that diagonal terms of 7, can vanish only simultaneously with v, .
Therefrom:

4
Too

(1.5) s Do,
a=1 Yo
(1.6) Uy Ty + Uy Ty T U3 Tro— 20y Uy Uy (v +Vy, +V45),
and
(1.7) Uy Uy Tag F Us Uy Tog + Uy Us Ty =y Uy Uy Uy (Vyy + Vo + V33— 3 V).

Expression (1.5) represents, under the assumption of non vanishing cano-
nical components of v,g, a relation between ., and v,, independent of four
velocity u,; meanwhile (1.6), (1.7) express the trace of v,g in function of u,
and 1,g.

We shall assume now the nullity of the quadritic forms v,z &% and
Vs ¥* ER. So:

(1.8) 8) Ve BHEP=0 5 £20,8=0, (B=gupusfPe—1)
and
(1'9) b) Vo(gll“gﬁ:() & Ea Eavauﬁ—eu“uﬁvaaﬁ=o.

Above relations can be verified at once. We shall draw the consequences
of a), in analogy with (1.4), (1.4’), forming:

(1.10) Pua = Vs (O% + L E) (35 + EgED).

Using (1.8) we obtain:
(1.11) Ous = Oap + (U + 9E5) P g + (g +0E) L s
with

0= Vo b+ Voo + 6y EY Vy Eg +Eg EY V By

Tensor G;Q expresses the departures from Born’s rigidity in the field Ze.
We should obtain relations of the form (1.4’) between p,g, £* and v,g, this
being reduced to its principal frame, and then consequences of the form (1.5),

(1.6), (1.7).
With b) the procedure would be the same. But then a nonsymmetric
tensor x,s appears:

(1.12) Yom = Vyp (0% + g ") (85 + U u’).
When writing down diagonal relations analogous to (1.4'):

K=Yy [1+ (ui)z + (‘21)2] s Ky =Vy4y [1 —(u,-)z—(ii)zl ,
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178 1. Lukagevié
we obtain, from a) and b), for g, and x,g, simple relations analogous to (1.5):

4 4
(1.13) > Pao S Foa _ o

a=1 Yoo a=1 Vaa

Other relations corresponding to (1.6) and (1.7) are simple to write.
The conclusions is:

The components of a normal relative deformation tensor vug (a tensor with
a real timelike eigenvector), when expressed in its principal frame, are connected
with the components of tensor tua, given by (1.4), by relations (1.5), (1.6)
and (1.7). Under conditions a) and b) tensors pyg and wyg, analogous to 7ug,
are related in the same way to vy by (1.13), and other expressions correspon-
ding to (1.6) and (1.7).

We have in general for v,gu:

vpub=_F E* +our, (p=uPuvVg&,)
Vaﬁgazjz(ga"‘&ua)-

We shall now take into consideration relations a) and b), and add them
assumption 2), not taking into consideration 1).

2) Vectors u* and £* define a local timelike 2-flat II; we assume that
one of the eigenvectors, say (i), of vyg, lies in the local spacelike 2-flat II¥,
which is the orthogonal complement of II.

We have then:

(1.14)

VaBuB:“ua'*‘pga‘{‘Ylou

(1.14") , , ,
szB‘iB_‘x Uy + goc"f’Y Iy,

where [, is a vector of II*, orthogonal to ¥g,. Multiplying (1.14’) successively
by u?, %, on account of the identity (1.2) and relations a) and b) (eqs (1.8),
(1.9)), terms with J, vanish and right hand sides of these relations become
homogeneous in «, 8, o', p’ with non vanishing determinants. So these coef-
ficients are null. Denoting by —2X the ratio v/y" (y'#0) we obtain:

(1.15) Vag (U + AEE) = 0.

The conclusion is that under assumption 2), i.e. orthogonality to u* and &*
of one eigenvector of vug, and relations a) and b), which imply that the pseu-
doangle between u* and %> remains constant along each £* world line (but possibly
variable from one to other), and that the ratio between projections E*EPV, ug
and wuPVyEg is equal to 0 (=E*u,), relative deformation tensor v,g has no
components in the direction u* -+ N\e*, which can be of any type in spacetime.

It is easy to verify that our condition is sufficient and obtain, from (1.15),
relations a) and b).

Let us remark that the nullity of two quadratic and one bilinear from, i.e.
identity (1.2) and conditions a) and b) only, lead to the transformation of II
in I1*, which becomes, with assumption 2), singular, mapping II into the
straight line defined by /*.
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Consider the case when Il is an invariant tangent subspace with respect
to VO(B:

Vo (@b + bEP) = cu, + dE,,
(1.16) ocB( ) 4 o
Vas (@ WP D' EBy=c'u, +d'E,,.

Since we have, from definition (1.1):
viuP = — (85 + uv ug) P ub,
then combining with (1.16), one obtains:
(1.17) Feu¥=hu¥ +pkr.

1.e. conditions (1.16) are sufficient for fields u* and £* 1o be surface forming.
We remark that conditions for v,z to have eigenvectors in II are sufficient
for (1.16). Let us take them as an assumption.

3) vqg has two real eigenvectors in the local 2-flat II. We shall add, to
that assumption, first relation a) only, and examine proceeding consequences.

Since we have then
(1.17") Vap (auﬂ_l_baa):x(a) (aug+bE,),
. Vag (@' uP + b 88 =%y (@ uy +b' ),

relations (1.2) and a) give us successively:
K(S):O \// a= :L‘b9
K(4) = 0 \/ a = + b.

So for eigenvalues xg,, %y different from zero, eigenvector () is spa-
celike, L, timelike:

. 0—1
(1.18) Cy=u—E% Lly=uw+E% xgp=%e——,
6+1
and
%2>0 = %y >xy,
(1.18) %y=0 = % =0,

*xn<0 = %<wny-

The first two conlusions (1.18) were drawn in [11] under the same
assumptions, but we obtained also that then %= —2, which is an error, the
only condition being &< —1.

We obtain, when adding relation b) to previous ones:
(1.19) Vg P = v £ = 0.

Under condition 3) and relations a), b), vug has no components in II.

Having considered these several cases, we shall choose among them to
draw more conclusions, not considering only local algebraic properties.

12*



180 1. Lukadevié¢

Let us take the case of u* &* forming a two parameter family of 2-sur-
faces S in spacetime with a v,g satisfying relation (1.15) (with A:£0). That
condition reads explicitly:

(1.20) Vos (1P +2EP) = 8up gu EB—uy uP uv VB ZY +hg (o +Buy)=0.
The condition of forming surfaces requires, from the above, that:
(1.21) ga(ga‘%%ua):“ua‘kﬁaa‘

After multiplication by »* and &%, having in mind that a) and b) are
the consequences of (1.20), we obtain first B=a«d, then & must be of unit
modulus. This being contradictory, « and 8 must be null. So v,z has no com-
ponents in II, and from (1.14):

Frur—our=0, (p=uPurVg&,),
jg(ia-f-eua):O.

The first relation (1.22) expresses the fact that v,z has no components
in direction u®. It reduces therefrom to its projection, orthogonal to u* given
by T4 in (1.4):

(1.22)

Vo = Tap = Yv5 (81'*'”0( uY) (Sg‘i‘llﬁ us).
The second relation (1.22) reduces vyg to its projection orthogonal with
respect to 2-flat II. These vectors being timelike we have:
(1.23) Vos = Vs 1o 18
where

1
Ty =gae—€:*1 (U ttg+Suy Eg+ 98, ug+ 5, 8p)-

“Biprojecting” tensor t,g is analogous the one introduced in (Greenberg [6]).
But there the projector was constructed by means of two mutually orthogonal
vectors, one of them being timelike, the other necessarily spacelike.

Since we assumed considered variables to be second order derivable, we
shall make use of an identity concerning these derivatives. A fundamental iden-

tity reads:
Zu L Tap— L L uTag=Zn Tup-

(cf Yano [3]) where A*=_%F &% T, can be any tensor. Applying the above
formula to Aug, in the case when v, has no components in direction u®, one
obtains, in virtue of the first relation (1.22):

(1.24) 31‘ Vdﬁ—gi 60({3= '—CPGaB (=] vaBuB=0

643 being the proper deformation tensor, i.e. the Lie derivative of A, with
respect to u*:

(125) caB=V“uB+VBua+uauYVYuB+uﬁuY V‘Yuot'

The equivalence in (1.24) follows at once from the first relation (1.22).
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Multiplying (1.24) by £%, we get, on account of both relations (1.22);
(1.26) 35 (ous EB) =®@0qu3 g8,

In an appropriate local frame relation (1.26) can be expressed as an
“equation of propagation” for c,g &P (cf Lichnerowicz [5]). That frame is given
by the comoving system of £* with £%(0, 0, 0, 1) and &g —gg, £* =844 (0, 0, 0, —1).

Thus locally g —gg,. Relation (1.26) takes then the form:

(1.26") 0, Oy + 0% 0y €34 = POs-

Suppose that the fieled o5, was null on a spacelike hypersurface X, taken
as an initial state surface. It results from the form of (1.26’), homogeneous
in og,, that the derivatives of any order with respect to »* of that quantity
ought to be null. We have to modify here our initial assumption of second
order derivability, which was minimal, and take instead infinite derivability.
The conclusion is that o,5£® must remain null along the world lines of &=
As it has, by definition, no components in the direction of u*, it must become
null in every 2-flat II. Thus:

For surface forming fields u*, £, tensor vyg being orthogonal to an arbitrary
direction in every Il (different from u* only), and o, orthogonal to t* on a
spacelike hypersurface X, both tensors have no components on surfaces S in the
whole domain containing the world lines of £* which intersect with X. In other
regions of spacetime vqg remains orthogonal to S and ocyg identically orthogonal
to world lines of u*.

Conversely, with vuauP=0,358=0, we obrain from (1.24)

(1.27) F O£ =0,

For (vuatP)z = 0 we have the nullity of that vector in all the region con-
taining world lines of u* which intersect with X'.

We have, from the preceding, relations (1.22) and one more:
(1.28) Gos £ = Oug Wy EY = 00 (E8 4+ 0u8) = 0
along the £* curves which intersect with X. By (1.25) we have then
(1.28") Oup EPE* =u% 0, (01 =0.
With (1.22) and (1.28) pseudoangles between u* and £* remain constant on

every 2-surface S.

The nullity of the above quadratic form implies the locally hyperbolic
character, with respect to the spacelike vector £,+9u,, of the (spacelike)
proper deformation tensor cyg.

Having written (1.28) explicity, we obtain, on account of the first rela-
tion: (1.22):

(1.29 Fulat 0w, =0, (wy=uPVgu,).
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The Lie derivative of contravariant £* with respect to u* being, under
our conditions, proportional to u%*; the Lie derivative of its covariant coordi-
nates becomes proportional to the acceleration vector w,. Thus:

(1.30) Ll ZuEa=0.

*

* *

We shall apply, to some extent, previous conclusions to relativistic magne-
tohydrodynamics.

Vektor field u* is the field of four velocities of a MHD continuum.
Maxwell’s equations take the corresponding form. But except these assumptions
our medium will not be specified by any energy tensor. That is perhaps not
very explicit, but on the other hand, the fact that we draw some consequences
of the presence of a MHD electromagnetic field only leaves us the possibility
of applying them to any material scheme.

Electric current J* has, in a charged medium, component parallel to u®,
the other one, due to infinite conductivity and never vanishing, being ortho-
gonal to u* and indeterminate. For a variable magnetic permeability ., magnetic
induction b* ought to be written instead of A%, without any change in the
results, in what will follow.

Maxwell’s equations are:
(2.1a) Vo (u*hb—uf hvy =0

(2.1b) %‘ EaBYS VB (hY us—hg uY):J“.

Equations (2.1a) have, as a first consequence, that stream lines u* and
magnetic field lines &* form 2-surfaces S, as can be verified at once. We shall
restrict the congruence £% demanding that its families be contained in S,
forming thus the same surfaces with u* or A* Then, denoting by % the intensity
of h*, we shall write the first group of Maxwell’s equations as:

hus b
(2.12) v, [V?%—;l (€ + %u“)——lﬁ}}f_ LD u“)] =0,
or after developing
h hu* hEx

" - B ! B__ SR P

(2.1a") T e _V“(V32—1)a Va(W__T)u.
Multiplying this expression by uz we obtain:
h h h
22 ppp— V “—l—u"‘ UBV 1 "|— “() [ e— V uB‘f‘&Uao .,,__)=0.

( ) V'S‘Z——l( oc‘i agﬁ) E, a(l/{}z—l) B 6(1/32-—1

Using definition formulae (1.1) and (1.26), we write this as:

(2.2 VE+ SoE—h% 9, 1n<V3h 1)=0.
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Devoloping this relation we can verify, in the case of proper dilatation
(6%>0) and of magnetic field with non increasing strength along its lines of
force, that the relative expansion v} increases with the absolute value of $
along A*, being then a dilatation, with v§>s%. For proper contraction (6%<0)
conclusions are symmetrically opposite.

For A='}/92—1 constant along magnetic field lines, which is, in parti-
cular, the case of a magunetic field having constant strength and pseudoangles
along every line of force, vi and o} are of the same sign, with |v§|>|c%].
Both vanish simultaneously.

Equations (2.1”) can be written, with the help of (2.2") in an alterna-
tive form:

-1
(2.3) O‘Z’Eu":( hd_) [o§+u°‘()aln(87}11)}h9+u“uYVaEY‘u‘3.

o
We obtain from these relations, using the first of (1.15), that for an

incompressible fluid (in the kinematical sense o%=0) with a constant ratio

h/)/9*—1 along each streamline (proper time independence), relative deforma-
tion fensor v,g has no components tangent to these lines.

Combining with previous results we are led to the fact that for a MHD

fluid having constant ratio h]Y9*—1 in each 2-surface S, generated by stream
and magnetic field lines, and kinematically incompressible either in the proper or
in the relative sense, the other kind of incompressibility also holds, and vy is
orthogonal to its stream lines.

In virtue of (1.26) or (1.27), we obtain, in addition to preceding condi-
tions, that when either the proper or the relative deformation tensor is orthogo-
nal to the magnetic field, with the same inital condition on the other one, given
on a spacelike hypersurface X or X', then both are orthogonal to the stream and
the magnetic field lines along world lines %%, resp. u®, which intersect with X
resp %'

A case when o, is orthogonal to the magnetic field was obtained in [10],
for #, hy=0, Vou*=0. Expansion-free MHD was considered in (Bray [12]).

In order to complete the preceding we shall consider relative vorticity
tensor ,5, already defined in [11]. Although this tensor is purely kinematical,
like vqg, we introduce it in this section in connection with MHD, in order
to obtain some further relations. Relative vorticity tensor reads:

(24) QO(B == Va EB'—VB EJOL + Uy zy VY Ug— Uy u¥ Vs E‘Y + Ug uy Va EY_uB EY V'Y Ug.

By (1.1) we have:
(VOCB + 'roﬁ) u" = (.
Then
2.5) vep =0 & Qupuf=0.

The conclusion is: for a fluid having h/)/9*—1 constant in S, with
vanishing o or v, relative vorticity tensor is always orthogonal to stream lines
as a consequence of the orthogonality of vyg.
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The preceding can be expressed by means of a vorticity vector ¢,
defined as (cf [1], [11]):

1
(2.6) ¢O( = '2 EaBYS uB §2Y5 .

In considered case, when (2.5) holds, Q,s reduces to its spacelike pro-
jection @,4:

2.7) Q= Qs h 1 = oy,

The absence of vortici'y, defined by the vanishing of ¢* involves then
the nullity of ®,5. From (2.6):

$*=0 = ug Oys+uy Dy +us Pp, = 0.
Multiplying by #®, on account of the spacelike character of ®,; we have
¢*=0 & Og, =0.
The nullity of {*, when added to preceding conditions, leads to the vanishing

of the relative vorticity tensor Qqg.

We shall obtain, using (2.1b), a relation between the electric current
vector 7% and the spacelike vorticity vector {# we introduced.

When multiplying (2.1b) by £g we obtain:
1
Y ey hs (Ve bg— V&) =Eg TP,

The form of the left hand side is due to the fact that £* can be locally
expressed as a linear combination of #* and A% Therefrom, by definition
formula (2.6):

(2'8) hoc ‘-Iﬂ:goc g

For a vorticity vector field orthogonal to S, the electric current is ortho-
gonal to &, and vice versa.

This result is analogous to the one obtained in (Yodzis [9]) for proper
vorticity vector w* and four velocity u® instead of ¢* and &=

*

*® k)

We shall consider, finally, some relations between scalar invariants of
considered tensors.

Putting v =v,gv*® and Q?*=Q,5Q** we form the differences:
B1) V0 AV, ER Vo Brt 2un Y, Bty Vg EY 4 (4 uP Vi ).
Then, having in mind the orthogonality to u* of t,5 and @gg:
T2 D2 =4V E* (Vo BB+t ¥ Vy EF + PtV &t uy uP u PV, E5) =

3.2
(3.2) =4[V EP- Vo Bt 2un V2P, Vo B+ (uo P V Eg)].
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Hence
3.3) vV—Ql=12 P2,

The difference between he first quadratic invariants of vy and Qg is equal
to the difference between the invariants of their projections t,5 and Dyg.

In order to examine a particular case we write
3.1) V—Q2=4h, 5 0 (hyg=VeE+ugu?V,£).
The non symmetric tensor 2,g satisfies the condition
3.2) Aap P =0.

Let us assume that it is symmetric. It becomes then spacelike, with real
spacelike axes. Thus the quadratic form (3.1) is definite, and we have:

(3.3) Magy =0 = ¥v1—Q2>0.

Therefrom v2=Q? implies the vanishing of A,s. Multiplying that tensor
by £+ we obtain that any convariant derivative of £; is then equal to zero:

(3.4) Map=0 = UV, E,=0 = V,E=0.

The symmetry of A,z and the equality of the first quadratic invariant v2
and ? have the consequence that £ becomes a covariant constant, being
either constant in minkowskian spacetime or making the metric static in the
general relativistic case. It can be verified at once that v,z becomes then
twodimensional and timelike, with purely imaginary eigenvalues, being not
thus a normal tensor.
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