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Introduction

Consider some equipment whose interfailure time is a random variable. We
want to make this time as long as possible. One way to do that is “preventive
replacements*. There is more than one model describing them, as it can be
found in [1]. [2]. Almost every paper on this topic considers a different model
of replacements. This paper also introduces a new model. In order to prevent
failure of equipment we replace still working overaged equipment or stop the
whole process. If working equipment failes we also stop the process. We want
to determine the plan of replacements and stopping polices as a function of given
parameters in order to realize maximal profit (minimal loss).

This paper consists of three parts. The first part describes the problem.
In the second part we derive basic functional equations and prove the theorem
of existence of optimal polices. In the third part some numerical problems of
determinating optimal plan are discussed.

1. Let X,, X,, ... be a sequence of nonnegative ' independent identically
distributed random variables with distribution function F (x) =P (X;<x), F(0)=0.
Let t, Ty, T,, ..., Ty, 1<k< oo be a sequence of positive real numbers such

k

that S, => T;<t. Let a, b, ¢ be constants and a>0, b>0, ¢=0. Define the

i
random variable in this way

(1 Y=(aX,—c) I{X,<T1}+k§[a(S,-+X,-+1)-—ib——c]><
j=1

xIH{X, =T, ..., Xi>Ti, Xp<Tiy 3+ [aS— (k= 1D)b1 1{X,>T,, ..., X; =T},
Y=0, TI,=0 or t=0.

We interpret introduced objects in the following way. X;, X,,... are
interfailure times of the first, second,... equipment respectively. At the mo-
ment o we put on the first equipment. At the moment S;., we put out of the
operation i-th equipment and put into operation i+ 1-th, if i-th equipment did
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not fail before the moment S;,,. Replacements are made up to the first failure.
or stopped ai the moment S,. At the moment ¢ we stop anyway. Constants
a, b, ¢ are profit per unit of interfailure time, cost of a planned replacement
and loss due to failure before the moment of planned replacement respectively.
Variable Y is, then the total operation profit due to the work of the whole
system. T,=0 means that we do not let the system work.

According (1) we have
T,
(2) k(t, Ty, ..., Tk)=EY=f (ax—c) dF (x)+
0

Ti+|
k—1

+zf [a(S;+ x)—ib—] dF(x)ljl(l-F(T})H—

i=1

+[aSe—(k— 18 [T(-F(T)),
j=1
T
3) k(t T)=ky(T)=a [[1-F ()] dx—cF(T), 0<T<t, for k=1.
(1]

2. Call the sequence T;, T,, ... the plan and denote it by (7). Let, par-
ticularly, (7);=(Ty, T,, ..., Tj). Let

4) k(t)=8(1;pk(t,(T)), k;-(t)=( sup k(t,(T)), i=1,2,....
)

T)j I<i<<i

We want to find the plan (T)* for which we obtain supremum in (4).
In general (2) is not convenient though we may get certain results (in case of
differentiability). :
Let the plan (T') suggest at least one replacement i.e. (T)=(T}, T,,...)
and let (T")=(T,, ...). Then
) k@, (D) =k, (T); X,<T)+k(t,(T); X,>T))=
=E@X,—¢; X,<T)+[aT,=b+k(t=T,, (IN] (1= F(T))=
=k (T) +[k(t—T;, (T')-b] (1-F(T\))=

—k(T)+k(t—T,, (T") B(T),

where
(6) k(T)=ko(T) ~b(1~F(T)), B(T)=1-F(T).
For i>1 it follows that
Q) k ()= sup k(t, T))= sup k,(Ty),
0Ty <t 0Tyt
ki (t)y=max{k,(t), sup k(t, (T))}=
(T, 2<j<<i+1
=max {k, (1), sup [k(T)+ sup k(t—T,,(T"),) B(TYl}

0<T <t (T, 1<j<i

or

(8) Kiyy (¢) = max {k, (t),ozl;gt[E(T) +k;(t—T) B(D)]}.
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In the same manner

©) k (1) = max e, (1), sup (K (T)+k (¢ T) B(D}}:
By definition in (4)
(10) kl (t)gkt(t)<k;rl(t)gk(t)<ata i=ls 2’ e

But, we have also

Lemma 1. k(t)=lim k;(¢)

[~»00

Proof: Let (T) be an infinite plan, and let ¢'=1lim §;<{¢. Let Z be non
failure operation time up to the first failure. Then for i>1 and (T%)=(T;yy, ...)
we have

k@, (T)=k(t, (T); Z<S)+k(t, (T); Z=S)=
=k(t, (T)); Z<S)+[aS;—ib+k(t—S;, (TH)] P(Z=S)=
=k, Tyy ..., Tj, t=S)+[k(t—Si, (T)) ~ ko (t=S)] P(Z=8)<
<k, Ty, ..., T;, t—=S)+[a(t—S)+c] P(Z=S).

Let P(Z>1t")=0, otherwise it would be k (¢, (T)) = — oo. Then P (Z>S5)—0,
i—o and [a(t—S)+c] P(Z>=S)<e, for i sufficiently large i.e. the finite
plan always exists which is good enough.

Lemma 2. 0<k,(¢+¢)—k;(t)<Las, i=0, 10. 0k (t+e)—k(t)<as,
t>=0.

Proof: Plan (T) on [0, ¢t] is also a plan on [0, t+¢] because
k
_ZT,-<t<t+s. Then k (¢, (T))=k (¢t +¢, (T)). Hence, the left inequality is pro-

ved. If (T) is a plan on [0, £+¢] it can be reduced to a plan (7)) on [0, ¢]
stopping at 7. By (10), k(g)<ae, so obviously k (t+¢, (T))<k (¢, (T)") + ac.
From this we have proved the right inequality.

Consequence: Funcions k;(¢), i=1, 2, ..., k(¢) are continuous and
k;(t)—>k (t), i— oo, uniformly with respect to ¢ on finite intervals.

Lemma 3. k(t)=k,(2), 011y,
s=sup{t:k (u)=k, (), for all u, 0<u<t}=
=sup{t:k (T)+k, (u—T) B(T)<k, (), 0<T<u<t}>—b—.
a

_ Prooft k()=k,(r), t<t, means that for T, 0<T<y, follows k, (#)>=
=k(T)+k(—T) B(T)=k(T)+k,(t—T) B(T). Suppose the opposite. Then
considering (8) k,(u)=k, (u) ie. k(T)+k,(u—T) B(T<k,(u), 0<T<u ie.
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ky(w=k (u) etc. ki(w)=k@=k,(u), i=2,3,.... If k,@-T)-b<0 or
k, (8)<b then from k(T)+k,(S—-T) B(T)=k,(T)+[k;(8—T)—b] B(T)<
<k, (T)<k (), 0<T<3

(11) 1,8, =sup {3:k; (3)< b},
follows because k, is an increasing function in 3.
T

By definition in (7), if &k, (3)<b af[l—F(x)] dx— CF(T)<b, T<3,
0

T
follows. The last relation always holds if af [1-F(x)] dx<b, ie. t,28,>T,=
0

T

=sup[T:f[l—F(x)] dx<%}>%.

If ;L:f[l—F(x)] dxgi, ie. T,=o we, of course, do not need any
a

0
preventive replacement. _

Let F(x) be a continuous function. Then k,(T) and k (7, t)=k(T)+
+k(t—T) B(T), 0<T<t, are also continuous and there exists 77, 0<<T'<¢,
for which k, (t) =k, (T"). If k(t)>k, (¢) there exists T" for which k(T", t)=
= sup k(T, t). In the first case optimal plan is (T)=(T’). In the second

0<T<t
case T =T, is the moment of the first replacement. Further, we examine

k(t—T") in the similar manner and obtain optimal finite plan, as the theorem
states.

Theorem: Let F(x) be a continuous function. Then there exists a finite
plan for which k(t)=k (¢, (I).

Proof: Suppose that following the previous costruction we obtain infi-
nite plan. Then for every i>1

i—1
k()= E(@Z-ib—c; S, <Z<S;,)+laS;—ib+k(t—S)] P(Z=S),

i=0
(proved by induction). Let, as in Lemma 1. t'=1imS;<t and P(Z>t")=0,
hence k(t—S)=k(' —S)). For i s.l. t’—S,-<—b— and by Lemma 3. k(' —S)=
a

=k, (¢t —S;) which means that in the interval [¢'—.S,, t'] we do not make any
replacement but we stop the process, which is in contradiction with the
assumption of infinite plan.

3. In order to obtain optimal plan we have to find the function k (¢) using
equation in (9) or reccurence formula in (8). Because k(f) is calculated using
k(t—T), 0<T<t, it is necessary to have initial values for small 7, which we
have obtained from Lemma 3.
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Particularly, for decreasing failure rate distribution we do not need to plan
replacements i.e. we stop at the moment T' for which k(t)=k, (t)= sup ko ()=

<T<t
=k, (T").
Equation in (9) can be written in the form

(12) k(1) =max {k, (), sup [k (t—T)+k(T) B(t—T)]}
0<T<t

The first, we need to find ¢, if it is possible. In that case in (9) we do

. . b
not consider k, (¢) for #>¢,. Otherwise, we can choose come other ¢,, — <1, <¢,,
a

and subdivide the interval [¢,, ¢] with points ¢, <t,< - -+ <t,=t, depending on
given tolerance. Then for j=1, 2,..., n we calculate values

(129 k(t) max {k, (t) max [K 2 — 1) +K(t) B(t;—1)]},
and obtain the sequence K(tl), k(tz), cees k(tj). Then we take k (£)=k (t,).

When we find k(¢), we have to calculate corresponding sequence which
gives us the optimal plan. In order to do that we start from the end ie. we
look for the value f;=t,, which gives us maximum in (12’) for j=n. Further,

we look for value #,_; which gives maximum for /~<(t,7) and so on, up to do

certain i for which we have E(t) k, (t}). We also have to calculate the va-
lue 15, for which k, () =k, (to) Then, optimal plan is (¢,~fn, th—th_1, .- »
tl-l—l tt s rO)

Example: Let F(x)=x, 0<x<1. Let a=1, b=0,12, ¢=0,5. Let r=1.
We have

<
K (1)=(1-1) 10,5, t<I; kl(t)=[0,125 0,5<t<1

(1—1)¢-0,5, t<0,5
k(t)=(—0,5t+0,62) t—0,12, 0<1<1,

IE(tj)=max{k1 (), lrrllax l{[(—0,5) (5—1)+0,62 -k (1)] (tj—t,)—0,12+7c(t,)}}.
<< j—

Using (11) we obtain §,=0,4. We subdivide the interval [0,4; 1] into
equal parts of lenght 0,05 and step by step we obtain

k (0,4) =k, (0,4)=0,12
k (0,45) =k, (0,45) = 0,12375

k(0,5) =k (0,55)= - - - =k (0,85) =k, (0,5 =0,125
k (0,9)=0,1258125 obtained for 7,=0,45
k (0,95) =0,126875 obtained for 7,=0,45
k(1,00)=0,1275 obtained for #,=0,5.

Hence, the optimal plan is (0,5; 0,5). Obviously a better approximation of the
starting value would shorten the calculation.
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In certain circumstances we may obtain the result using differential cal-
culus. Let the function F be differentiable on [0, t] Function k(t, T}, ..., T})

in (1) is constant for ¢>T,. Therefore, put k (T, ..., T)=k(t, T}, ..., Tp).
Then

(13) k=k(Ty, ..., Ty=k(T)+k(T,, ..., T,) B(T),

and in general

(14) k(T ..., T)=k(T)+k(Ti,,, ..., T) B(T),

I<i<k—1, k(T =k (T)).
Let ¢>0. We can see easily that

ok 0k (T) 0B(T)
15)  —=B(T,) B(T):+ B(T,_) | —L+k(Ti\y,..., T, ,
(a9 SL-BT) BT (J[M (T, 0
1<ig<k—1
ok 0k, (T
B(T,)=1, — K B(T)- - B(Ty-),
(Ty aTk o7, (To) (Tp-p)
and if B(T)=1-F(T)>0, T<t, then the system of equations ok =0, i=1,k
is equivalent to x
(16) ‘)k—(T‘)+k(Ti+l,..., Tk)‘)B(T")=0, 1<i<k—l,M=O.
i i 0T,
Using (6), (3), (16) we obtain
an =BT _e=b Ly 1, 2<ick, - 2D _ <
CB(T,) a a B'(Ty) a
and using (14)
Ti
B,( -1) _ £+f B (x) dx— B(T;) —=* B(Ti)
B'(T, —1) a g B(T)
— F(T, —F(T,
(18) 1_’17(_7_1)=_ f(I—F(x)) du+ (1 F(ry) 1= EID),
F'(T;_y) F(T) ’
2<Likk,
1-FT)_ < T+ T+ - - - + T, <t
F'(Ty) a

Hence, if optimal solution can be obtained by differentiation, it has to
satisfy the system in (18).

As we can see in (18) neither T, nor T,_,, T;_,, ... depend on k. Hence,
if the solution of the system (18) we denote considering the order of obtamlng
by T1, T3, ...(T1=T,), then the optimal plan for a given k is Tk, Tk—1, ..., Ti.
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So, using (17) and (14), we have
19 k(Ty, ..., T)=k((Tik, ..., TD)=k"(Tx)=

*

Ty
=a[f (1-F(x) dx+—(ﬂ]-—c.
0

F'(Tp)

Still, it is in question which k is optimal. Let S/=7T,+ .- -+T;=
=T;+ ...+ Ti. Using Theorem and Lemma 3. we see that it is necessary
to plan replacements as long as 7—S/>7r. Let 0<<t—S/<t,<t—-S1.
It means that k(z—S})=k,(t—Sj). If k,(t—S;)=0 it means that the pro-
cess stops at Sj, and we have that optimal plan with j— 1 replacements is
T;, Tj—1, ..., T1. If k,(t—S;)>0, it means that j replacements is necessary.
Optimal plan using j replacements is 7}.;, T, ..., T1, On the other hand,
considering that optimal plan is finite, and comparing related k* (T1), k* (T2), ... ,
we can also find the optimal lenght of the plan.

Example: Let F(x)=x, O0<x<1, t<1. System (18) becomes

1 1 b ¢
o m— O ——, O =1-T!, i=1,2,..., 0i=2.
7 2 a g

In order to find the solution it has to be:

2 e
If e;—e;=i(—c—) + L 2 o0 e 1—t<i<1—\/2i, it will be
2\a 2 a a a a

e;+1-e;=_;_(e,-”—e,-‘3,)>o, i=2,3,....

Then, using (19), we have
* * * * a M . a * -
K (Tiz)—k (Ti)=7[(1—Ti+1)2_(1—Ti)z]—‘i‘[eijl—elz]>0,
and the optimal lenght of the plan is k for which Ti+ ... +Ti<t<Ti+
oo+ Thn.
If 5-01<0 ie. max{l—t, 1—\/2%]<%‘<1, then 6;.,—0/ <0 i.e.

K (Tt —k* (T})<0 and then k=1 is optimal, and T°=1—-< .
a

In the previous numerical example we had =1, i=0,5 —b—= 0,12,
a a

which satisfy the condition 1—t<%<1 - \/2%. Then T1=1 —-5—= 0,5, T3=

=1- (—;— 0,52 + ——;—- 0,12)=0,495, T3=0,4924875, and then we have T)+
+To<1<Ti+T5+T3. It means (0,495; 0,5) is the exact optimal plan,
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and it does not differ too much from the plan obtained by approximative cal-
culation. Using (19) we have k*(T3) =k (T3, Ti)=0,1275125=Fk (1), but using
approximative calculation we have k(1) =0,1275.

If ¢=0, it is obvious that we should not stop the process before the
moment ¢ i.e. T,+T,+ - - - + T, =¢. But in this case we cannot obtain 7} by
derivation as we have done in (18). Instead of that we have to solve the sys-
tem of equations with respectto T, T,, ..., Ty_, with condition T, =¢—-T, —
—~+++=T,_{>0. We can do that by giving the value of T} and testing whether
that value is optimal, using (19). This procedure does not seem to be conve-
nient in general. ‘
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