ON THE SUP AND INF INVARIANCE OF SOME SEPARATION AXIOMS

Peter Krenger and Jürg Rätz

(Received May 19, 1976)

1. Introduction.

We consider here some of the most familiar separation axioms, namely T_4 , $T_{3^{1}/2}$, T_3 , T_2 , T_1 , T_0 , N (normality), CR (complete regularity), R (regularity), and R_0 , the terminology for the T_{ν} 's being that of [3] or [7]. $T_{3^{1/2}}$ -space means Tychonoff space. An R_0 -space (also called *symmetric space*) is a topological space $\langle X, \mathfrak{T} \rangle$ satisfying the axiom

$$(R_0)$$
 $x, y \in X; x \in cl_{\mathfrak{T}}\{y\} \longrightarrow y \in cl_{\mathfrak{T}}\{x\}$

(cf. [1] p. 889; [7], p. 49, Problem 9). It is well known that the implications

hold ([7], p. 61, Theorem 4. 3. 1). A property P which can be attributed to a topological space (or to a topology) is called *sup invariant* (inf invariant) if, for any family (\mathfrak{T}_j) of topologies on a fixed non-empty set X, $\sup_{j \in J} \mathfrak{T}_j = \bigvee_{j \in J} \mathfrak{T}_j$ (inf $\mathfrak{T}_j = \bigcap_{j \in J} \mathfrak{T}_j$) has property P whenever each \mathfrak{T}_j has property P. A topology having property P is called a P topology.

The purpose of this note is to complete the statements about invariance or non-invariance of the separation axioms occurring in (1).

2. Sup invariance.

On the basis of topological embeddability of $\langle X, \bigvee_{j \in J} \mathfrak{T}_j \rangle$ into the topological product of the $\langle X, \mathfrak{T}_j \rangle$'s, N. Levine ([4], Corollary 8) established the sup invariance of most of the separation axioms considered here. His method easily applies also to T_0 and R_0 . (For a different procedure concerning R and CR cf. [6]). A remarkable exception from sup invariance is normality ([4], Example 17. 5); however, the counterexample given there does not serve for T_4 .

Theorem 1. T_4 is not sup invariant. More precisely, the sup of two T_4 topologies need not be normal.

Proof. Let \Re denote the usual topology and \Re^+ the right half-open interval topology ([7], p 24, Example 3) on the set $\mathbf R$ of real numbers. For simplicity we denote the product topology of two topologies $\mathfrak T_1$ and $\mathfrak T_2$ by $\mathfrak T_1 \times \mathfrak T_2$. Since $\Re \subset \Re^+$, it follows that.

$$(\mathfrak{R} \times \mathfrak{R}^+) \vee (\mathfrak{R}^+ \times \mathfrak{R}) \subset \mathfrak{R}^+ \times \mathfrak{R}^+$$

 $(\Re^+ \times \Re^+)$ is called Sorgenfrey's half-open rectangle topology). By virtue of $E_1 := (a-1, b) \times [c, d) \in \Re \times \Re^+$, $E_2 := [a, b) \times (c-1, d) \in \Re^+ \times \Re$, $[a, b) \times [c, d) = E_1 \cap E_2 \in (\Re \times \Re^+) \vee (\Re^+ \times \Re)$ for any real numbers a, b, c, d such that a < b and c < d, and of (2) we obtain

(3)
$$(\Re \times \Re^+) \vee (\Re^+ \times \Re) = \Re^+ \times \Re^+.$$

Now, for I: = [0, 1], we define the subspace topologies

$$\mathfrak{T}_1 := (\mathfrak{R} \times \mathfrak{R}^+) \mid (I \times I), \quad \mathfrak{T}_2 := (\mathfrak{R}^+ \times \mathfrak{R}) \mid (I \times I).$$

It is known that $\mathfrak{T}_1=\Re\mid I\times \mathfrak{R}^+\mid I([2],\ p.\ 99,\ 1.\ 2.\ (3)).$ As a closed subspace of the T_3 Lindelöf space $\langle \mathbf{R},\ \mathfrak{R}^+\rangle$ ([7], p. 78, Example 2), $\langle I,\ \mathfrak{R}^+\mid I\rangle$ is T_3 Lindelöf, therefore T_2 and paracompact by Motita's theorem ([2], p. 174, Theorem 6. 5). This and the fact that $\mathfrak{R}\mid I$ is T_2 and compact imply that \mathfrak{T}_1 and — analogously $-\mathfrak{T}_2$ are T_4 topologies ([5], p. 180, Theorem V. 7).

On the other hand, by (3), (4), and the easily verified formula $\mathfrak{T}_1 \vee \mathfrak{T}_2 = [(\mathfrak{R} \times \mathfrak{R}^+) \vee (\mathfrak{R}^+ \times \mathfrak{R}^+)] \mid (I \times I)$, we get $\mathfrak{T}_1 \vee \mathfrak{T}_2 = (\mathfrak{R}^+ \times \mathfrak{R}^+) \mid (I \times I)$. The points of $I \times I$ having both coordinates rational form a $\mathfrak{T}_1 \vee \mathfrak{T}_2$ —dense subset of $I \times I$, so $\mathfrak{T}_1 \vee \mathfrak{T}_2$ is separable. $A := \{(x, 1-x): x \in I\}$ is a discrete closed subspace of $\langle I \times I, \mathfrak{T}_1 \vee \mathfrak{T}_2 \rangle$. By an argument of F. B. Jones ([2], p. 144, Example 3), $\mathfrak{T}_1 \vee \mathfrak{T}_2$ is not normal.

3. Inf invariance.

Here the situation is quite different from that of section 2.

Theorem 2. Among the axioms in (1), T_1 is the only one which is inf invariant. More precisely, if P is an axiom occurring in (1) and being distinct from T_1 , then the inf of two P topologies need not be a P topology.

Proof. i) T_1 is inf invariant since, for every non-empty set X, the cofinite topology $\{G \subset X; \ X \setminus G \ \text{finite}\} \cup \{\emptyset\}$ on X is included in any T_1 topology on X. ii) Let X be an infinite set and p a fixed element of X. We define

(5)
$$\mathfrak{T}_{p} := \{G \subset X; X \setminus G \text{ finite and/or } p \notin G\}.$$

It is not hard to see that \mathfrak{T}_p is a topology on X and that $\{q\} \in \mathfrak{T}_p$ for every q in $X \setminus \{p\}$. (This topology was used in [4], Example 17.1, for other purposes). The \mathfrak{T}_p -closed sets F are characterized by

(6)
$$F \subset X$$
, F finite and/or $p \in F$.

Let F_1 , F_2 be two disjoint \mathfrak{T}_p -closed sets. Case $1: p \in F_1 \cup F_2$, say $p \in F_1$. Then $p \notin F_2$ and, by virtue of (5), F_2 is \mathfrak{T}_p -open. Hence F_1 and F_2 can be

separated by the open sets F_2 and $X \setminus F_2$. Case $2: p \notin F_1 \cup F_2$, i. e., $p \notin F_1$ and $p \notin F_2$. By (5), F_1 and F_2 are \mathfrak{T}_p -open and can be separated by F_1 and F_2 . This shows that \mathfrak{T}_p is normal. By (6), \mathfrak{T}_p is also T_1 , thus T_4 . (By the way, \mathfrak{T}_p , as the one-point compactification of the discrete topology on $X \setminus \{p\}$, is compact and T_2 , hence T_4 ; cf. [7], p. 139, Theorem 8.1.2, and p. 83, Theorem 5.4.7). As a consequence of (1), \mathfrak{T}_p satisfies all the separation axioms occurring in (1).

Now let p, q be two distinct elements of X. Then $\{p\}$ and $\{q\}$ are disjoint, \mathfrak{T}_p -closed, and \mathfrak{T}_q -closed, therefore $\mathfrak{T}_p \cap \mathfrak{T}_q$ -closed. Let G_1 , $G_2 \in \mathfrak{T}_p \cap \mathfrak{T}_q$ such that $p \in G_1$, $q \in G_2$. (5) and $G_1 \in \mathfrak{T}_p$, $G_2 \in \mathfrak{T}_q$ imply that $X \setminus G_1$ and $X \setminus G_2$ are finite. It follows that $X \setminus (G_1 \cap G_2)$ is finite, i. e., # X, in other words that $G_1 \cap G_2 \# \emptyset$. So $\{p\}$ and $\{q\}$ cannot be separated by $\mathfrak{T}_p \cap \mathfrak{T}_q$ -open sets which means that $\mathfrak{T}_p \cap \mathfrak{T}_q$ is neither normal nor regular nor T_2 . A fortiori, by (1), $\mathfrak{T}_p \cap \mathfrak{T}_q$ does not satisfy T_4 , $T_{31/2}$, T_3 , and CR. (For a different argument concerning T_2 cf. [7], p. 92, Problem 106).

iii) Of course, the counterexample of part ii) cannot serve for the separation axioms "beyond" T_1 , namely for T_0 and R_0 . But the T_0 case is settled by $X = \{a, b\}$, $a \neq b$, $\mathfrak{T}_1 = \{\varnothing, \{a\}, X\}$, $\mathfrak{T}_2 = \{\varnothing, \{b\}, X\}$, and the R_0 case by $X = \mathbf{R}$, \mathfrak{T}_1 the usual topology \mathfrak{R} on \mathbf{R} , $\mathfrak{T}_2 = \{\varnothing, (0,1), \mathbf{R} \setminus (0,1), \mathbf{R} \}$.

REFERENCES

- [1] A. S. D a vis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961) 886—893.
 - [2] J. Dugundji, Topology, Allyn and Bacon, Boston 1967.
 - [3] J. L. Kelley, General topology, Van Nostrand, Princeton 1955.
 - [4] N. Levine, On families of topologies for a set, Amer. Math. Monthly 73 (1966, 358-361.
 - [5] J. Nagata, Modern general topology, North-Holland Publ. Comp., Amsterdam 1968.
- [6] M. J. Norris, A note on regular and completely regular topological spaces, Proc. Amer. Math. Soc. 1 (1950) 754-755.
 - [7] A. Wilansky, Topology for analysis, Ginn, Waltham, Mass. 1970.

University of Bern, Switzerland