ON A CLASS OF SENTENTIAL FUNCTIONS

Milorad Kapetanović

(Received June 14, 1978)

Every *n*-ary (n=0, 1, 2, ...) truth function f of the two-valued sentential algebra (with \top , \bot as constants) satisfying the condition

$$(*) f(\top, \top, \ldots, \top) = \top,$$

can be built using \top , \wedge and \Rightarrow only (the converse is obvious). This is proved by induction on n. For if n=0, f is \top , and if n>0, the proposition follows from

$$f(p_1, \ldots, p_n) = \begin{cases} f_{\perp}(p_1, \ldots, p_{n-1}) \Rightarrow p_n) \Rightarrow (f_{\top}(p_1, \ldots, p_{n-1}) \land p_n), & \text{if } f_{\perp}(\top, \ldots, \top) = \top \\ ((\neg f_{\perp}(p_1, \ldots, p_{n-1}) \Rightarrow p_n) \Rightarrow p_n) \Rightarrow (f_{\top}(p_1, \ldots, p_{n-1}) \land p_n), & \text{if } f_{\perp}(\top, \ldots, \top) = \bot, \end{cases}$$

where the functions f_{\top} and f_{\bot} are defined by $f_{\top}(p_1, \ldots, p_{n-1}) = f(p_1, \ldots, p_{n-1}, \top)$ and $f_{\bot}(p_1, \ldots, p_{n-1}) = f(p_1, \ldots, p_{n-1}, \bot)$, because, by induction hypothesis, it holds for $f_{\top}(p_1, \ldots, p_{n-1})$ and exactly one of $f_{\bot}(p_1, \ldots, p_{n-1})$, $\neg f_{\bot}(p_1, \ldots, p_{n-1})$. As a simple corollary, any truth function can be constructed this way, at most one use of negation.

There is a slight generalization of this result to the case of finite many-valued sentential algebra. Consider such an algebra with $E = \{1, 2, ..., n\}$ be a set of truth values $(n \ge 2)$ and let, for some $l \le s < n$, $D = \{1, 2, ..., s\}$ be a set of designated elements. Here, some truth functions have the following property, analogous to (*):

- (P) the restriction of the function to the domain D is itself an operation on D, These are some of them, for example:
- (1) maximum and minimum;

(2)
$$c_l(x_1, ..., x_m) =$$

$$\begin{cases} s, & \text{if } (x_1, ..., x_m) \in D^m \\ l, & \text{otherwise} \end{cases} (l = s + 1, ..., n; m = 1, 2, ...);$$

(3)
$$j_{k_1...k_m}(x_1, ..., x_m) =$$

$$\begin{cases}
l, & \text{if } (x_1, ..., x_m) = (k_1, ..., k_m) \\
s, & \text{if } (x_1, ..., x_m) \neq (k_1, ..., k_m) \text{ and } (x_1, ..., x_m) \in D^m \\
n, & \text{otherwise}
\end{cases}$$

$$((k_1,\ldots,k_m)\in E^m, m=1, 2,\ldots).$$

It is interesting that the functions (1), (2) and (3), together with the elements of D as constants, constitute a *basis* for the class of truth functions with the property (P). For if f is in the class, it can be expressed as

 $f(x_1, \ldots, x_m) = \min \{ \max (K_l, j_{k_1 \ldots k_m} (x_1, \ldots, x_m)) | f(k_1, \ldots, k_m) = l \}.$ where

(4)
$$K_{l} = \begin{cases} l, & \text{if } l \in D \\ c_{l}(x_{1}, \ldots, x_{m}), & \text{if } l \notin D. \end{cases}$$

To prove this let (x_1, \ldots, x_m) (e_1, \ldots, e_m) be an arbitrary *m*-tuple of elements of E. The proof splits in two cases.

- a) $f(e_1, \ldots, e_m) = d \in D$. Then the "disjunct" $\max(K_d, j_{e_1 \ldots e_m}(x_1, \ldots, x_m)) = \max(d, l) = d$, by (4) and (3). All other "disjuncts" $D(x_1, \ldots, x_m)$ are of the form $\max(K_{f(k_1, \ldots, k_m)}, j_{k_1 \ldots k_m}(x_1, \ldots, x_m))$ with $(k_1, \ldots, k_m) \neq (e_1, \ldots, e_m)$, so $D(e_1, \ldots, e_m) \geqslant j_{k_1 \ldots k_m}(e_1, \ldots, e_m) \geqslant s$, by (3); hence, the minimum of all "disjuncts" is d.
- b) $f(e_1, \ldots, e_m) = e \notin D$. Then, since f has the property (P), $(e_1, \ldots, e_m) \notin D^m$. Therefore, using (4), (3) and (2), $\max(K_e, j_{e_1 \ldots e_m}(x_1, \ldots, x_m))$ has the value $c_e(e_1, \ldots, e_m) = e$. For all other "disjuncts" $D(x_1, \ldots, x_m)$ it follows by (3) that

$$D(e_1,\ldots,e_m)\geqslant j_{k_1\ldots k_m}(e_1,\ldots,e_m)=n$$
 (since $(k_1,\ldots,k_m)\neq (e_1,\ldots,e_m)$), i. e. the minimum of all "disjuncts" is e .

The above defined basis is not finite, so the next problem is to look for a finite one. The problem is settled by the relations

(5)
$$c_r(x_1, \ldots, x_m) = \max(c_r(x_1), \ldots, c_r(x_m))$$
 $(r = s + 1, \ldots, n),$

(6)
$$j_{k_1...k_m}(x_1,...,x_m) = \max \{ j_{qt}(x_q,x_t) \mid q,t \in \{k_1,...,k_m\} \}$$

(especially, for m=1 we get $j_k(x) = j_{kk}(x, x)$),

because it follows from them that the following functions constitute a finite basis for the class of truth functions with the property (P), namely:

$$1^{\circ}$$
 constants $1, 2, \ldots, s$;

$$2^{\circ} c_r(x) \quad r = s + 1, \ldots, n;$$

$$3^{\circ} j_{at}(x, y), q, t \in E^{1}$$
.

¹⁾ Functions c_r and j_{at} are, of course, defined as in (2) and (3), resp.

To get this it remains to prove (5) and (6). For (5) note that the right side $R(x_1, \ldots, x_m)$ of (5) has the property (P) and also

$$(7) s \leqslant R(x_1, \ldots, x_m) \leqslant r,$$

by (2). So if $(x_1, \ldots, x_m) \in D^m$, then $R(x_1, \ldots, x_m) = s$ and if $(x_1, \ldots, x_m \notin D^m)$, then some $x_i \notin D$ $(l \le i \le m)$, hence $R(x_1, \ldots, x_m) \ge c_r(x_i) = r$ by (2), i. e. $R(x_1, \ldots, x_m) = r$, by (7).

To prove (6) first let $(x_1, \ldots, x_m) = (k_1, \ldots, k_m)$. Then the right side $S(x_1, \ldots, x_m)$ of (6) is obviously l by (3). Secondly, if $(x_1, \ldots, x_m) = (b_1, \ldots, b_m) \neq (k_1, \ldots, k_m)$ and $(b_1, \ldots, b_m) \in D^m$, then some $b_i \neq k_i$ ($l \leqslant i \leqslant m$), so $S(b_1, \ldots, b_m) \geqslant j_{k_i k_i} (b_i, b_i) = s$, by (3). Moreover, $S(b_1, \ldots, b_m) \leqslant s$ since $S(x_1, \ldots, x_m)$ has the property (P), hence $S(b_1, \ldots, b_m) = s$. Finally, if $(x_1, \ldots, x_m) = (c_1, \ldots, c_m) \neq (k_1, \ldots, k_m)$ and $(c_1, \ldots, c_m) \notin D^m$, then some $c_q \neq k_q$ ($l \leqslant q \leqslant m$) and some $c_t \notin D$ ($l \leqslant t \leqslant m$; the case q = t included). It follows by (3) that $j_{k_q k_t}(c_q, c_t) = n$, hence $S(c_1, \ldots, c_m) = n$.

REFERENCE

[1] J. B. Rosser, A. Turquette, Many-Valued Logic, Amsterdam, 1958

Miodrag Kapetanović Matematički institut, Beograd