ON BASES AND PROJECTIONS IN NON-ARCHIMEDEAN BANACH SPACES

P. K. Jain and N. M. Kapoor*

(Received December 3. 1976)

1. Introduction

In [3, 5], it has been shown that a non-archimedean (n.a). Banach space of countable type has a basis. Very recently, the authors [1] have obtained a necessary and sufficient condition for a general n.a. Banach space (countable or uncountable type) to have a basis and derived certain criterion for a basis to be orthogonal. In this paper, it has been observed that there is close connection between the existence of bases and projections. In fact if there is a basis for a closed linear subspace F of a n.a. Banach space E, a very general condition allows to define a projection of E on F.

2. Notations and Terminology

Let K be a n.a. non-trivial valued field which is complete under the metric of valuation of rank one. Throughout, by E we shall mean a n.a. Banach space over the field K with n.a. norm $\| \cdot \|$. Let E', E'', E''' denote the duals of E, E' respectively. Let J, J' be the natural embeddings of E into E''' and E' into E'''. For general properties of n.a. Banach spaces we refer to [2, 4, 6].

Let $X \subset E \setminus \{0\}$ be any system of vectors. We may write

$$X = \{x_{\lambda} : \lambda \in \Lambda\},$$

where Λ is an index set of any cardinality. Let Σ be the set of all finite subsets of Λ directed by inclusion.

A system X is said to be summable to x in E if $\lim_{\substack{\sigma \\ \lambda \in \sigma}} \Sigma x_{\lambda} = x$, $\sigma \in \Sigma$, where $\lim_{\substack{\sigma \\ \sigma}} y_{\sigma}$ denotes the limit of a net $\{y_{\sigma} : \sigma \in \Sigma\}$ in E. Further, a system X

^{*} The research work of this author has been supported partially by the University Grants Commission, India.

is a basis for E if to each x in E there exists a unique system $\{\alpha_{\lambda}: \lambda \in \Lambda\}$ of scalars such that $\{\alpha_{\lambda}: \lambda \in \Lambda\}$ is summable to x i.e.

(2.1)
$$x = \lim_{\sigma} \sum_{\lambda \in \sigma} \alpha_{\lambda} x_{\lambda}, \ \sigma \in \Sigma$$

Clearly, with each basis $\{x_{\lambda}\}$ there is associated a unique family $\{f_{\lambda}\}$ of linear functionals on E such that $f_{\lambda}(x) = \alpha_{\lambda}$, where x is given by (2.1). Thus, without ambiguity, we may write a basis $\{x_{\lambda}\}$ as $\{x_{\lambda}, f_{\lambda}\}$ as and when we need so. If for a basis $\{x_{\lambda}, f_{\lambda}\}$ the family $\{f_{\lambda}\}$ is in E', then the basis is said to be Schauder.

A double system $\{x_{\lambda}, f_{\lambda}\}$, $x_{\lambda} \in E$, $f_{\lambda} \in E'$ is called a biorthogonal system if $f_{\mu}(x_{\lambda}) = \delta_{\lambda\mu}$, where $\delta_{\lambda\mu}$ denotes the Kronecker symbol. Let $\{U_{\sigma}\}$ be a family of linear operators on E defined by

$$U_{\sigma}x = \sum_{\lambda \in \sigma} f_{\lambda}(x) x_{\lambda}, x \in E, \sigma \in \Sigma.$$

Obviously, the operators U_{σ} are continuous projections of E with the property U_{σ} $U_{\tau} = U_{\sigma n \tau}$.

By a projection on E we mean a linear transformation $P:E\to E$ such that $P^2=P$.

3. Projections on E

Theorem 3.1. Let $\{y_{\lambda}: \lambda \in \Lambda\}$ be a basis system* in E. If there exists a system $\{f_{\lambda}: \lambda \in \Lambda\}$ in E' such that $f_{\lambda}(y_{\mu}) = \delta_{\lambda\mu}$ and $\{f_{\lambda}(x)y_{\lambda}\}$ is summable in E for all x in E, then P given by

(3.1)
$$Px = \lim_{\sigma} \sum_{\lambda \in \sigma} f_{\lambda}(x) y_{\lambda},$$

defines a projection of E on $\overline{sp}\{y_{\lambda}\}$. Conversely, if K is spherically complete and P is a projection of E on $\overline{sp}\{y_{\lambda}\}$, then there exists a unique system $\{f_{\lambda}: \lambda \in \Lambda\}$ in E' such that $f_{\lambda}(y_{\mu}) = \delta_{\lambda\mu}$ and (3.1) holds.

Proof. The proof of first part is simple and is omitted. For the converse, let $\{g_{\lambda}:\lambda\in\Lambda\}$ be the associated biorthogonal family to $\{y_{\lambda}:\lambda\in\Lambda\}$. Since K is spherically complete, by Hahn-Banach theorem (see [4], p. 8) there exists an extension g'_{λ} of g_{λ} ($\lambda\in\Lambda$) to the whole space E. Obviously, $g'_{\lambda}\in E'$.

Let $P^*: \{\overline{sp}\{y_{\lambda}\}\}' \to E'$ be defined by

$$P *g (x) = g (Px), g \in \{\overline{sp} \{y_{\lambda}\}\}', x \in E.$$

^{*} $\{y_{\lambda}: \lambda \in \Lambda\}$ is said to be a basis system in E if $\{y_{\lambda}\}$ is a basis for $\overline{sp}\{y_{\lambda}\} \rightarrow .$

Take $f_{\lambda} = P^*$ $g'_{\lambda} \in E'$. Then $f_{\lambda}(y_{\mu}) = \delta_{\lambda\mu}$. Since $\{y_{\lambda}, g_{\lambda}\}$ is a basis for $sp \{y_{\lambda}\}$, we have

$$Px = \lim_{\lambda \in \sigma} \sum_{\alpha} g_{\lambda} (Px) y_{\lambda}$$
$$= \lim_{\alpha} \sum_{\lambda \in \sigma} f_{\lambda}(x) y_{\lambda}, x \in E.$$

The uniqueness of the family $\{f_{\lambda}\}\$ follows obviously.

As an immediate consequence of the first part in Theorem 3.1, we have.

Theorem 3.2. Let $\{x_{\lambda}, f_{\lambda}\}$ be a basis for E. If $\{F(f_{\lambda}) x_{\lambda} : \lambda \in \Lambda\}$ is summable in E for all F in E'', then J(E) is complemented** in E''.

The converse of theorem 3.2 is available in

Theorem 3.3. Let $\{x_{\lambda}, f_{\lambda}\}$ be a basis for E and P a projection of of unit norm of E'' on J(E). If for every f in E' there is unique \mathfrak{F} in E''' such that $\|\mathfrak{F}\| = \|f\|$ and $f(x) = \mathfrak{F}(Jx)$ for all x in E, then $\{F(f_{\lambda}), x_{\lambda} : \lambda \in \Lambda\}$ is summable in E for all F in E''.

Proof. Since $\{x_{\lambda}, f_{\lambda}\}\$ is a basis for E, we have

$$J^{-1}PF = \lim_{\sigma} \sum_{\lambda \in \sigma} f_{\lambda} (J^{-1}PF) x_{\lambda}$$

$$= \lim_{\sigma} \sum_{\lambda \in \sigma} J' f_{\lambda} (PF) x_{\lambda}$$

$$= \lim_{\sigma} \sum_{\lambda \in \sigma} P^*J' f_{\lambda} (F) x_{\lambda}, F \in E'',$$

where P^* defined as in Theorem 3.1. To establish the theorem it is enough to show that $P^*J'f_{\lambda}=J'f_{\lambda}$.

Let F_{λ} be the restriction of $J' f_{\lambda}$ to J(E). Then $F_{\lambda}(Jx) = J' f_{\lambda}(Jx) = f_{\lambda}(x)$, $x \in E$. Therefore

$$||F_{\lambda}|| = \sup \left\{ \frac{||F_{\lambda}(Jx)||}{||Jx||} : Jx \neq 0 \right\}$$

$$= \sup \left\{ \frac{||f_{\lambda}(x)||}{||Jx||} : Jx \neq 0 \right\}$$

$$\geqslant \sup \left\{ \frac{||f_{\lambda}(x)||}{||x||} : x \neq 0 \right\}$$

since $||Jx|| \le ||x||$. Thus

$$||F_{\lambda}|| \geqslant ||f_{\lambda}|| \geqslant ||J'f_{\lambda}||.$$

^{**} A subspace F of E is said to be complemented in E if there is a projection from E onto F.

Further $P^*J'f_{\lambda} \in E'''$ and $P^*J'f_{\lambda}(Jx) = J'f_{\lambda}(PJx) = J'f_{\lambda}(Jx) = F_{\lambda}(Jx)$, for all x in E. Consequently, $P^*J'f_{\lambda}$ is an extension of F_{λ} to E'' and so

$$||F_{\lambda}|| \leq ||P^*J'f_{\lambda}|| \leq ||P^*|| ||J'f_{\lambda}|| \leq ||J'f_{\lambda}||,$$

because $||P^*|| \le ||P|| = 1$. Hence, $||P^*J'f_{\lambda}|| = ||J'f_{\lambda}||$. Since $f_{\lambda}(x) = J'f_{\lambda}(Jx) = P^*J'f_{\lambda}(Jx)$ for all x in E, it follows that $P^*J'f_{\lambda} = J'f_{\lambda}$.

4. Existence of basis in E

Theorem 4.1. It $\{x_{\lambda}: \lambda \in \Lambda\}$ is a basis for E, then there exists a positive constant α such that

dist.
$$(S_{\sigma}, E_{\sigma}) \geqslant \alpha, \quad \sigma \in \Sigma$$
,

where

$$(4.1) S_{\sigma} = \{x : x \in sp \{x_{\lambda} : \lambda \in \sigma\}, \|x\| = 1\}$$

(4.2)
$$E_{\sigma} = \overline{sp} \{ x_{\lambda} : \lambda \in \Lambda \sim \sigma \}$$

(4.3)
$$\operatorname{dist} \{S_{\sigma}, E_{\sigma}\} = \inf ||x-y|| : x \in S_{\sigma}, y \in E_{\sigma}\}.$$

The converse holds provided ||E|| = |K|.

Proof. Since $||x|| \le \sup ||U_{\sigma}x|| < \infty$ for all x in E, we have ([4], p. 75)

$$1 \leqslant \sup \left\{ \frac{\sup_{\sigma} \|U_{\sigma}x\|}{\|x\|} : x \neq 0 \right\} = \sup_{\sigma} \|U_{\sigma}\| < \infty.$$

Take

$$\alpha = \frac{1}{\sup ||U_{\sigma}||},$$

so that $0 < \alpha \le 1$. Since each U_{σ} is a continuous projection, $(I - U_{\sigma})$ is closed and hence $E_{\sigma} \subset (I - U_{\sigma}) E$ Therefore, S_{σ} being the unit sphere of $U_{\sigma} E$, we have dist $(S_{\sigma}, E_{\sigma}) = \inf \{ ||x - y|| : x \in U_{\sigma} E, y \in E_{\sigma}, ||x|| = 1 \}$

$$\geqslant \inf \{ \| x - y \| : x \in U_{\sigma} E, \ y \in (I - U_{\sigma}) E, \ \| x \| = 1 \}$$

$$\geqslant \alpha \inf \{ \| U_{\sigma} (x - y) \| : x \in U_{\sigma} E, \ y \in (I - U_{\sigma}) E, \ \| x \| = 1 \},$$

since $||U_{\sigma}(x-y)|| \le ||U_{\sigma}|| ||x-y|| \le \alpha^{-1} ||x-y||$. Further it, may be noted that $U_{\sigma}(x-y) = x$. Hence

dist
$$(S_{\sigma}, E_{\sigma}) \geqslant \alpha$$
.

The proof of the converse part is simple and the details are omitted.

REFERENCES

- [1] Jain P. K. and Kapoor, N. M. On bases in non-archimedean Banach spaces (Communicated).
 - [2] Monna, A. F. Analyse non-archimédienne, Springer Verlag, Berlin (1970).
- [3] Monna A F. and Springer, T. A. Sur la structure des espaces de Banach non-archimédeens Proc. Kon. Ned. Akad. V. Wet. A 68 (1965), 602—614.
- [4] Narici, L., Beckenstein, E., and Bachman, G. Functional Analysis and valuation theory, Marcel. Dekker, INC. New York, (1971).
- [5] Van Der Put, M., Espaces de Banach non-archimédiens, Bull. Soc. Math. France 97, (1969), 309-320.
- [6] Vanrooij A. C. M., Non-archimedean functional analysis, Mathematisch Institut Katholieke Universiteit, Nijmegen (1971).

Faculty of Mathematics, University of Delhi, Delhi—110007 INDIA. Department of Mathematics, Hans Raj College, University of Delhi, Delhi—110007, INDIA.