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1. Introduction

Let us consider the following examples of multiplicative arithmetical func-
tions:

a) Sum of divisors function o(n)= >, d, 6(p?)=1+p+---+p* (p de-
d|n

notes a prime number throughout the paper, ., summation over all divisors
din
on n). ,
b) Euler’s totient function ¢ (n)= > 1=n 2, u(d)/d=the number
m<n, (m, n)=1 din
of integers less than » which are relatively prime to n. Here p (n) as usual
stands for the M&bius function, and ¢ (p®) =p*—p*~L
¢) Dedekind’s function ¢ (m)=n[ ] (1+1/p)=n 2 y?(d)/d. Here [ de-
pln din pln
notes the product over all different prime divisors of » and ¢ (p¥)=p*+p*~L
d) Unitary analogue of the sum of divisors function ¢* (n)= > d,
din(d, nid )=1
so that o* (n) is the sum of divisors d of n for which d and n/d are relatively
prime (such divisors d are called unitary divisors of #).We have o* (p%)=p*+ 1.
¢) Unitary analogue of the totient function: ¢*(n)=n > (- De@Dd
d|n,d, njd)=1
where « (n) is the number of distinct prime factors of n, o*(p*)=p°— 1.
For a more detailed account of o(n) and ¢ (n) consult [7], for ¢ (n) see
[8], and for o*(n) and ¢*(n) see [3]. All of the above mentioned functions
have the common property that they are multiplicative, positive and that

F)=p+a P +a, P g

where |a; ,|<1 for all k and i=1, 2, ..., k. Therefore, we may define a ge-
neral class of arithmetical functions D which contains all of the mentioned
functions as follows:
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Definition: A multiplicative function f(n) belongs to the class D if
for every prime p and every natural number k there exist numbers a,,, a,; ,
., ag, i such that

m ) =P +a, kP a, P2 gy,

where —1<aq; ;<K for some non-negative K and all k¥ and i=1,2, ..., k.

From this definition it is obvious that f(n) is strictly positive and that
f(n) is a natural number if the a;,’s are integers (if the a; x’s were allowed
to take smaller integer values than — 1 then f(n) would not always be positive).

For every arithmetical function f(n) we may define a new function f(n) as

2 fy= 2 1,

f(my=n

that is, as the number of solutions of the equation f(m)=n in m, if n is given.
Then N(x)=2, f(n)= 2, 1 is the number of integers m from which fm<x.
n<x fm)=x

The main purpose of this paper is to investigate the asymptotic formula
for N(x) when f(n) belongs to the class D. Since from (1) we see that f(n) is
in a certain sense about the same order of magnitude as n, we may suppose
that N(x) will behave asymptotically as Cx for a suitable positive constant C.
Theorem 2 shows that this is indeed so, giving a more precise result; the
method of proof used there originated with Paul T. Bateman, [1], who inves-
tigated the distribution of values of the Euler function ¢(z). One might be-
cause of (1) also expect that as x— oo > f(n)~Dx? (where D is a suitable po-

n<<x

sitive constant) since > n~x2/2 as x— owo. This is not difficult to obtain; if
n=x

we set F(s)= 2, f(myn=*, G(s)=F(s)/{(s—1) then using (1) and Z(s)=
n=1
10 -p=#1 (valid for Res> 1) we see that the abscissa of absolute con-
14

vergence of G (s) equals 1 and therefore a classical convolution argument (see [7]
for the corresponding results concerning o(n) and ¢(n)) gives for every £>0

3) s =92

nx 2

x% 4+ 0 (x1*9),

and additional information about f(n) may lead to improvements of the error
term.
2. Statement and proof of theorems

Theorem 1. If f(n) belongs to the class D then there exist positive
numbers C,, C, and a natural number n, such that

4) f(n)<C, n(loglog n)¥ for n>n,
%) f(m)=C, m/loglogm for m>1, n=2%m, m odd
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where K is the constant such that a; <K for all k and i=1,2, ..., k and a; ,
are the numbers appearing in (1).

Theorem 2, If f(n) belongs to the class D and a, , is an integer then
(6) N(x)= 3> 1=Cx+0(x-exp(~dlog’**x))
fmy=x

where d and ¢ are arbitrary positive numbers, C= lim (s—1)H(s), H(s)=
s—>14+0

I

S (fm)~.
n=1

Theorem 3. If f(n) belongs to the class D then
) s 1 =_i-(l_ko(logloglogx))
a=xlogf(n) logx log x

where the dash ' denotes summation over all n for which f(n)>1.

Proof of theorem 1. If p*||n means that p* divides n and that pk*!
does not, then since f(n) is multiplicative we have by (1)

o= [ 1= 1 (92202 1 20,5
e [ ] (1 +pf1) > log(l +;_I_<—1)<Kp% *__ISK,,;M,;—I{

where m = (n) denotes the number of dictinct prime divisors of n and p,, de-
notes m-th prime number.

Since > S 1 > —1——_0(1) and (see [7])

pex P—1 ;Sx P p=xP*-p

> ~1~=loglogx+0(1)

p=<x P

it follows that for some constant B>0 and n>n, logl_[(1+_L)£

p—1
<Klog(Blogp,).
From the elementary estimate p,<<n3/? valid for n>>3 we obtain

pln

logn(l +L)g1<log(i Blogm).
pln p—l 2

Using the elementary fact that nzl_[ p we have logn>w(n)log2, and so
pln

for n=5 logm=1logw (n)<loglogn—loglog 2<C2loglogn which proves (4) with
= (3 B)k.
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To prove (5) note that by (1) f(p*)=>p*—p*~'—pt~2—. .. —p—1 so that
f(p¥)=1 possibly only for p=2, otherwise f(P*)>1 and we have

k-1 k1 _2pk+ 1 —2
o M AR et T R R
® fe-fedrm=11 (=) ===,

K|\ m
Since for 0<x<1/2
<x+x?

lo
£ 1—x

then

1 \-! 1 ! 1 1
log (1 ——) = log(l —~—-) < (————+ )S
ﬂn p—1 .»|Zm p—1 plzm p—1 (p—1y

<log (C,loglogm) + O (1)<log (C, loglog m)

for m>1 and C, large enough, so that with C2=C_‘il

I \1 p—1 ~1
1— ——) = L <C% loglogm
ﬂn( o= pl;nl p—2
which combined with (8) proves (5).

Sharper estimates of > 1/p and p, would lead to explicit values of n,, C,

p=x
and C,, but C, and C, would still depend on K. Taking n=p,p, ... p, where
2=p,<p,< -+ -<p, are the first k primes it is seen that the bounds of (4)
and (5) are attained.
To prove theorem 2, the following lemma is needed:

]

Lemma 1. If f(n) belongs to the class D and H(s)= 3 (f(n))=* then

n=1
Q) HE=(1+(f@)+(fC) =+ - ) [[U=@+a, ) [](U+a(p, )
p>2 p>2

where I_[ (1+a(p, 5)) is absolutely convergent for c=Res>1/2.

p>2

Proof. Since f(n) is multiplicative we have

H(s)= H(l +(p+a, ) +(pPP+a,,pta, DTS+ (PP+ay s pPta,  ptas )T+
P

+o )=+ @)+ - )] A+(P+a, ) +(P +a,,p+

»>2
+ay,)7 0+ )

so that we may set

L+a(p, s)=(1+(p+a, ) +(p*+a,,p+a, )+ - )(1—(p+a,,)™)
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and therefore

a(p, s)=73% {(pr+a,,p 1+ Hay ) =P ta, )P Ay, P

n=2

o by )= i A(p, )/B(p; 3)-

n=2
!A (p’ S)l = l (p+al, 1)s (p"—l +a,, n—1p"—2+ tee +an_1’n_l)s_(pn+al'npn—1 +
toHa P [P HKP (P KPR A K (P KT e K

n—l_l (] n_l o
(p+K)° (pn—l +Kp—1-) _,_(pn_,_KI_’*T) <2(1+K)° (p_l_K)op(n—l)c.
p— p-

|B(p,s)|=|(p"+a,, ,p"" 1+ +a, ) (p+a, )P +a, ,_ p" 7+ - +

+an-1,n-1)s|2(p_1)u(pn_pn—l'— cie—p— l)o(pn—l_pn—Z_ R l)c
. n__1\° n—l__l L]
= (=2 =) (i - T
p—1 p—1

{(pr=2p"+ ) (p—2p 1+ 1) (p— D= {p™ 1 (p- 202 (p—1)"J°

p—2 °
> . p2n—1 .
( 2 F )

= o p+K —noG _ (] p_l-K G G"‘
la(p, 9)|<2 S B+4K) (,, 2) p1o=2(4+4K) (,, 2) )

n=2

Therefore, we have

and so [](l+a(p,s)) is absolutely convergent for Res>1/2 since (p+12< )
p>2 b

is bounded and > (p?°—p°)~1 is absolutely convergent for Res>1/2, which
2
proves the lemm:t.>

Proof of theorem 2. If f(n)= > 1 then
fm)=n

§f iy n=s= z (f(m)~=H(s)

and by lemma 1 we have
(10) H(s)=A(s) B(s)

where

o

A@s)= 2 amn=T]{(1—(p+a,)" 9,

n=1 p>2

B =0+ @)+ @)+ ) []A+alp, 5)

>2
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so that B(s) is absolutely convergent for Res>1/2. From (10) we obfain
N@=73fm=73 Sadb@/dy=73 bm 3 a(m).
n<x n<x dln n<x m=x/n

To estimate > a(m) we need the following theorem due to H. Diamond,

m<y
[6], on the so-called generalized integers:
Suppose =, is a non-decreasing sequence tending to oo and w,;>1; then

o«

ﬁ(l—rsn—s =TT (M 4rysdm24e) = i Biyi
n=1 i=1

n=1

where vy, =1,v,, v;, ... is an increasing sequence of positive numbers con-
taining distinct elements of the multiplicative semigroup generated by =, &, ...
and where 8, =1, B,, B,, ... are non-negative integers. If

> 1= [log‘lt-dH—O (xexp (—blog®x))
2

where 0<a<<1 and 5>0, then
z B;=Bx+ O (xexp (—clog+1 x)

—
LIX
Y%

for every ¢>0 and B— lim (s—1) [](1-m;)"".
n=1

s—>1+4+0

If we take m,=p,+4a,, , then since a, , is an integer y;=i, B;=a(i), and
by the prime number theorem (see Walfisz, [8]) for every £, >0 and some 5>0

> 1= > 1 =flog—1 t-dt+0 (xexp (—blog’5—21 x)).
2

T, <X p>2,ptay, <x

Diamond’s theorem gives then

(10) > a(n)=Bx+0 (x8(x)

where 8 (x)=exp (—clog?®—= x), ¢ and ¢ are arbitrary positive numbers,

1 a
(12) B= lim s— DT[] A—(p+a,) ) =— (1___1,1__),
s—>140 1,1;12 bl 2 ,,I;Iz p(p+a,,—1)

N(x)= gxb(n)m;xma(m):angxb(n)/n+0(x gx|b(n)|n—13(x/n))=
xBS bmm+0(xS [Bm|n)+0(x S [b()|n~13(x/n))
n=1 n>x ”SV;

LO(S b ny=x-B S b)in+0(x3(/x)+0 (x-x 1+e2) =

n>Vx n=1

x-B i b(n)/n+ O (xexp (— ¢’ log¥¥—<x))

n=1
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with perhaps a different constant ¢'>0, since 3 |b(n)|n~! is convergent and
n=1

3 (x) is eventually decreasing.

Since lim (s—1)H(s)= lim (s—1)A(s)B(l)=
s—1+0 s—>14+0

1 a ®
- 1_—M._). b(nyn1,
2 171:[2( p(p"l"al,l"'l) ngl
the theorem is proved. Theorem 2 may be applied to all the functions men-
tioned at the beginning of this paper; the constant C= lim (s—1) H(s) is
s—>1+4+0

easily computed for each of these functions using their defining properties and
lim (s—1)Z(s)=1.
s—>14+0

Proof of theorem 3. Since f(n) is multiplicative, logf(n) is an
additive arithmetical function. Asymptotic formulas for sums of reciprocals of
additive functions were studied by De Koninck in [4] and De Koninck and
Galambos in [5], where a sharper estimate than the one given by theorem 3
is obtained for f(n)=o(n). The method wused in [5] is generalized by a
forthcoming paper of E. Brinitzer, [2]. The proof of theorem 3 is a direct
consequence of theorem 1. Using the fact that > 1/logn = x/log x + 0 (x/log? x)

2<<n=<x
and that f(n)=1 possibly for n=2*%, so that there are O (logx) numbers <x
for which f(n)=1, we have by (4)

> ‘1/log f(n) anx "1/(logn+1log C, +logloglogn)>

n<<x
" > '1/1ogn+o(x1°g1°gl°gx)= x +o(x1°g1°g1°gx).
nex log? x log x log? x

iThis gives the necessary lower-bound inequality. To prove the upper-bound
nequality let from now on m denote an odd number greater than umity, and
since 1/logm — 1/(log C, +logm —logloglog m) = O (log log log m/log? m) we have
by (5)

> ‘logf(m< X 'lflogf(m)< 3 1/Iogm+0<w).
n=<x n=x 2km§x 10g2x

Using the fact that > I/logn= _, 1/log2¥m+O (logx) and that

2<<n<x 2k <x
by partial summation we ob'ain

> 1/logm=x/2logx+O (x/log?x); 2, 1/log2m=x/2log?x+ O (x/log?x)
m<x m=x
it follows that

> (/logm—1/log2kmy< 2. klogz/log2m=o( > 2 k/1og2m)=

*km<x Km<<x 2k<x m<x[2k

O > xk/2% log?(x/2% + 1) = O (x/log? x)
2Kk <<x
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so that finally we obtain

. X
(14) » 1/logf(n>glogx+o(

n<x

x log log log x)
log? x

which combined with (13) proves the theorem.
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