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1. Introduction and results

A positive, finite and measurable function R, defined on I,=[a, o[ for
some a>0, is said to be regularly varying at infinity if the limit

(1.1) lim Ripe
x>w R(x)

r()

is positive and finite for each ¢>0.

(i) (The Characterisation Theorem) If R is a regularly varying (RV) func-
tion, then the limit r(¢z) in (1.1) is necessarily of the form #¢ for some
— oo <p< o and for each #>0.

The number p is the index of R. RV functions of index 0 are called
slowly varying (S¥) functions and are denoted by L. Their interest lies in ‘the
fact that R is a RV function of index p if and only if R (x)=x? L (x) on some I,.

A RV function R of index p has the following properties:

(ii) (The Uniform Convergence Theorem) The relation (1.1) holds unifor-
mly for ¢ in any compact interval IC]0, oof.

(iii) The function log R is locally bounded on I, for some 5>0.
(lV) lim w: .
x> logx

(v) limx~°R(x)= o0 for 6<p and lim x~*R(x)=0 for v>p.

X—>00 X—>00

(vi) (The Representation Theorem) There exists a number >0 such that
for x>b

(1.2) R(x)=exp{a(x)+!ﬁ(t)d7’},
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where « and P are bounded measurable functions on I, such that «(x) conver-
ges to a real number and B (x)—>p as x— . Moreover, without changing the
characteristics of «, there exists a function § with a continuous derivative of any
specified order such that (1.2) holds.

(vii) For each pair of real numbers ¢ and 7, o<p<7,”

inf{t=° R (¢t)}~x"° R(x), sup {t " R(¢)}~x"" R(x) (x— o).

(viii) For each pair of real numbers ¢ and 7, c<p<r,

sup {t~°R(t)}~x"°R(x), , inf {t" R(¢#)}~x"" R(x) (x— ).

b<t<<x
(ix) For each o<p

lim —l—j Ry 1
x>0 X% R(x) t p-o
b

(x) For each 7>p

g *R( )f —lp'

Conversely, if the positive, finite and measurable function R on I, (a>0)
satisfies one of the relations (vi), (vii) or (viii), then R is a RV function of
index p. The same -is true if for some real o (r, respectively) the limit in (ix)
(m (x)) exists and is positive and flmte, the index p of the RV function R be-
ing then determined by the equation in (ix) (in (x)).

RV functions have been introduced by J. Karamata [1 2]. He proved
for continuous functions R the crucial of the here mentioned results. Since ihen,
many authors have contributed to the development of the theory of RV functions
and their application in different fields. In this respect we refer to the recent
book of E. Seneta [3].

Parallel to RV functions one can consider O-RV functions.

A positive, finite and measurable . function K on I,(a>0) is said to be
O-regularly varying at infinity if

(1.3) lim supm=r(t)
X—>00 (x)
is finite for each t>0.2
D f(¥)~g (x) means f(x)/g (x)->1(x—>0).
2) Or, equivalently: if
lim inf K(tx)>0 and lim sup K (tx)<
X—>00 X) X—>00 (%)

Jor each t>1.
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From
K (stx) K(stx) K (tx)
K(x) K(@tx) K

there follows, as x— oo,
(1.4) r(s))<r(s)r(t) for each positive s and .

If r(t)=0 for some >0, (1.4) would imply 1=r(1)<r()r(1/t)=0. Hence,
r (¢)>0 for each t>0. So,

lim inf ko L
o K(x) r(l/t)

is positive and finite for each 1>0 too. Consequently, K is a O-RV function at
infinity if and only if

(1.5) K (tx) <X K(x) (x— ) for each t>0.9

In this form? O-RV functions were introduced by V. G. Avakumovié¢ [4]
in a note concerning some tauberian theorems, but it was J. Karamata [5]
who in 1936 revealed their characteristic properties. It happened that N. K. Bari
and S. B. Steckin [6] in their well-known memoir on best approximation, which
appeared in 1956, independently introduced monotone O-RV functions which tend
to zero and developed their theory.

J. Karamata proved that a O-RV function K can be characterized by each
of the following conditions?: .

(K;) There exist measurable and bounded real functions « and § on 7/, for
some b>a such that for x>=b

(1.6) K(x)=exp{oc(x)+bfﬂ(t)%t—}.

(K,;)) There exist four numbers 0<m<M <o and o<t such that for
y=x=>b9

(1.7 m (%)"g% <M (%)‘ .

D f(x) <X g (x) (x—o0) means that there exists two numbers 0<m<M< o such that
(») m< f(x)/g (x)<M holds for x large enough. If we wish to precise that () holds for x>a,
we write f(x) <X g (x) on I,.
3 In fact, J. Karamata supposed that for a given A€] 1, oo[ there exist m=m (X)) and
M =M (}) such that
K (tx
0<m()\)<—IE(—(——;<M(7\)<oo for each t<[1, A}
X

E. Seneta [3] supposes a priori that m and M are independent of A.
3) Except (K;”) which occurs in E. Seneta [3]. In proving our Theorem 3 we prove

incidentally the equivalence of Karamata’s conditions (Xp), (Kj), (Kyp and (K;"); for the
sake of completeness their equivalence to (1.3) is proved in 2.7.

4) Another way to express (1.7) is to say that the function x—¢ K (x) almost increases
and that the function x—7K(x) almost decreases on I (see 2.1).
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(Kj;;) There exists a real number ¢ such that, as x—> o,
dt
(1.8) ft""K(t)—Xx*"K(x) on I, for each ¢>b.
t
b
(K;,,) There exists a real number © such that, as x— oo,

(1.9) ft"K(t)d—:Xx"K(x) on I,.

X

Remark. Moreover, if (1.6) holds, then there exist measurable and
bounded real functions « and 8 on I,, the function B being continuous, such that

%) K(x)=exp{3(x>+t[ B() —‘i—’]
b
holds. Indeed, one can take for
(1.10) B)= fam fwu—
and
(L.11) &m=ww+fmm—Mm?
b

] dt
=x(9+ [ (B(en)-B} (1-log) .
1
We note that B earns some properties of B: if B is monotone or convex, so
s B. Also:
B(t)=m for almost all t>c implies B(t)>m for t>c,
B(t)<M for almost all 1>c implies B(t)<M for t>c.

In particular, we have for x>b

inf p(t)> ess 1nf B(¢) and sup B(t)<ess sup B(@®)

t=x

lim inf B (x)>lim inf  (¢) and 11m sup g (x)<hm sup B (x).

X =» o0 X—> 00
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Repeating this procedure (x_, =, B_; =8, o,=,_;, Bp=Bn_s forn=1,2,...),
the function K given by (1.6) can be written, for any natural number N, in
the form

(1.6y) | K(x)=exp[aN(x)+ f B (0) %} (x>b),
b

where ay is a measurable and bounded and 8, a bounded and N times conti-
nuosly differentiable real function on 1.

Theorem 1. If K is O-RV function and I any compact interval in
]0, o[, then

K(tx)

lim sup———< o
x>0 (x)
holds uniformly for t in I, i.e.
. K (tx)
lim sup sup———=<C o0

x—~ow tel K(x)
Corollary 1. If I is any compact interval in |0, of, then

tim inf X %)

( . )
>0 wuniformly for t in I
bl iformly f

Corollary 2. The function logr defined by (1.3) is bounded on any
compact interval in ]0, oof.

Corollary 3. There exists a number b>a such that the function log K
is locally bounded on I,.

Indeed, let m, M and b be positive real numbers such that
m K (x) <K (tx)<< MK (x) for each t&[1, e] and each x>=b.

Then, any s [be”, be"t!] (n=0, 1, 2, ...) is of the form s=tbe" with t&[1, e],
so that

m K (be") < K (the”) = K (s) < MK (be™).
Theorem 2. Let K be a O-RV function and let r be the positive and
finite function on 10, o[ defined by (1.3). Then

1° the limits

(1.12) p=pE)=lim 28" D g g g k)= 1im 28D s,
-0+ logt t—= logt

2° — oo <pLg< o0,

3° r(t)=max {t?, 19} for each t>0;
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4° For any pair of real numbers p' and q', p’<p and q'>gq, there exist a
real number M>1 such that

r(H)<M max {t*', t9} for each t>0.

The numbers p and g are the lower and the upper index of the O-RV
function K. If p=gq, we say that K is of index p. Of special interest are O-RV
functions of index p=0; we call them ‘“slow* O-RV functions.

For a given O-RV function K define:

(1.13) p = p(K)=sup lim inf B (x),
= - B8 X—> 0

(1.13°) ¢ = p(K)=inf lim sup B (x),
B X—>

where the sup and inf are taken over all measurable and bounded functions B
on I, for which there exist a measurable and bounded function « on 7, such
that (1.6) holds:V

(1.14) p1=p1 (K)=sup {cER | x~° K(x) almost increases on I,},

(1.14°) o,=p, (K)=inf {tER | x~* K (x) almost decreases on I,};
: dt
(1.15) p2=p, (K)=sup c&R f t‘°K(t)7><
b
= x"9K(x) on I, for each c>b],
, - - . Yo dt
(1.15) p,=p, (K)=inf [TER f t7TK(t) — =< x""K(x) on I}.
t
Suppose, in the sequel, that K is a O-RV function of lower and upper

index p and g, respectively.

Theorem 3.

(1.16) P=p=p =p2; g=p=p1=¢:
Theorem 4.

(1.17) lim x~9K(x)= o for each oc<p,

(1.17) lim x~*K(x)=0 for each v>gq.

1) We note that the same numbers P and p are obtained if we take in (1.13) and (1.13)
respectively the sup and inf over all functions B which are N times continously differentiable
on I and that p (K)=—p (1/K).
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Theorem 5. If o<p the following equivalent relations are true:

(1.18) inft 9 K(t) <xx"°K(x) on I,,
122x
(1.19) sup t°K(t) <X x°K(x) on I,
b<t<Cx
(1.20) ‘ there exists a positive nondecreasing function ¢ on I, such

that K(x) < x°¢(x) on I,

If ©>gq the following equivalent relations are true:

(1.18) sup t K (1) X x~"K(x) on I,
t=x
(1.199) inf t—~K(@)<x""K(x) on I,
b<{t=<x
(1.20) there exists a positive nonincreasing function { on I, such

that K (x) < x*§ (x) on I,.

2. Proof of theorems

2.1. Almost monotone functions. A function f positive and finite on I, is
said to be almost increasing on I, (c=b), in symbols f(x) # for x>¢, if there
exists a constant M>1 such that

@.1) FX<MF () for each y>x>c,
or, equivalently, if
(2.2) S ()M inf f(¢) for each x>c.

t>=x

A function f(x) is said to be almost increasing when x— o (i.e. for x
large enough) if it is almost increasing on some interval I, or, equivalently, if

2.3) f(x) < inf £(1) (x—> o0).
t=x
We note that the last relation has the same meaning as

2.4 S(x)= inf £ (£) (x—> o).

By duality (with respect to the ordered set of positive real numbers in
which f takes his values), a function f is said to be almost decreasing on I,
in symbols f(x)™w for x>¢, if there exists a constant 0<<m<1 such that

2.1) f(x)=mf(y) for each y>x>c,
or, equivalently,

(2.2" f(x)=m sup f(t) for each x>=c.
t=x
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Similarly, a function f(x) is said to be almost decreasing when x— oo if

(2.3) S0y = supf(0) (x—> o0),
or, equivalently, if
2.4) [ =< 131>113f(t) (x> o0).

Almost increasing and almost decreasing functions are said to be almost
monotone functions. Since f(x) is almost increasing for x>c if and only if
1/f(x) is almost decreasing for x>>c, it is sufficient to consider only almost
increasing functions. We list here some properties of such functions.

(i) If f is almost increasing on I, then f is there bounded away from 0O
(inf f(¢)>0) and locally bounded from above ( sup f(t)<<oo for each x>c).
t=c [y £ 4

(ii) If f is almost increasing on I, then f is bounded from above on
I, or f(o)=oo. [From (2.2) follows lim sup f (x) <M lim inf f(x)].

X —>00 X

(iii) The function f is almost increasing and almost decreasing on I, if
and only if f is bounded away from both 0 and oo (0 <m< f(X)<M < ).

(iv) The product of two almost increasing functions on /. is an almost
increasing function (on 7). If f is an almost increasing function on 7, such
are f* and x* f(x) for each a>0.

(v) If f(x) is almost increasing when x-—>co and if g(x)—> oo(x—> o),
then lim g(x) f(x)= oo; in particular, lim x*f(x)= o for each a>0.

X—> o0 X—> 00

(vi) A function f is almost increasing on I, if and only if there exits an
increasing function ¢ on I, such that f(x) <¢(x) on I,. [Sufficiency: if me<
<f<M¢ on I, then f(X)SMo(XN)S<Mo()<m 1 Mf(y) for each y=x>c.
Necessity follows from (2.4):¢ (x)=inf f(?)].

t=x

(vii) If f is almost increasing on an interval, it is such on each subinter-
val. If f is almost increasing on two intervals with nonvoid intersection, then
it is such on their union.

(viii) If logf is locally bounded on I, (bounded on [c, d] for each d>¢),
then the following relations are equivalent:

2.1 f is almost increasing on I ;
(2.5) sup f() SFE) (x> o0);
(2.6) cilflixf(t)xf(x) (x—> o0).

[The relation (2.1) is equivalent to
2.7 sup f()M f(x) for each x>c.

[ -
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If f is almost increasing on I, then (2.5) follows on account of (2.7). If (2.5)
holds, then (2.7) follows with some d>c instead of ¢, and so f is almost increa-
sing on I; Being bounded away from both 0 and o« on [c, d], f is almost
increasing on [c, d] and, consequently, on I, t00.]

(ix) If f is measurable and almost increasing on I., then

(2.8) Fy ()= f t-a f(t)%t— < x=%f(x) on I, for each <0,

¢

(2.9) F, (x)g 7 f (1) a > x~2f(x) on I, for each «>0,
t

x

for which F,(c) is finite.

[Indeed, from f(1)Mf(x) for e<t<x, there follows
Fu()<Mf() f S <M ) f xmo 8o 2 e ()
and, similarly, Mf(#)>=f(x) for t>=x>c implies
MF, (9> (%) fmt—«?%x—“f(x).]

(ix") If f is measurable and almost decreasing on I, then
(2.8) Fa(x) < x~2f(x) on I, for each «>0,
(2.9) F,(x) > x"2f(x) on I, for each «a<<0 and each ¢'>c.

[The proof is similar. From mf (¢)<f(x) for t=x>c there follows

mF;(x)=mf ‘“f(t)—<f(x)ft “———x““f(x) for x=c
and f($)=mf(x) for x>=t>=c implies

F«(x)=ft"‘f(t)%t—>mf(x)ft—°‘%>mf(x)ft—«ft’ﬁ

x
>-l(1 - (i,)_a)x‘“f(x) for x>c’.]
—a ¢
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2.2. Proof of Theorem 1. The proof follows the same ideas as the proof
of Theorem 2.12 in E. Seneta [3]. We give it here for the sake of completeness.

The Theorem holds for I=[1, e]. For n=1,2, ... let

K . .
d,=sup sup () ,  O0<e,<d, limc,=limd,
xzn tel K(x)

and suppose that x,>n and #,&1 are such that

e <KX (<g).
K(x,)
It is enough to prove that the sequence (K (7, x,)/K (x,)) is bounded.

The sets

U= 0 {111, ]| K (tx)/K (x) <m},

j=n

V=0 {tell, €] | K (tx;) K (¢ 1jxj)<m}
Jj=n

are measurable and increasing with respect to m and n; they tend to the inter-
val [1, ¢?] when m and n tend to infinity. Choose the natural numbers M and
N such that

dt_ 3 dt 3

t 2 t 2

Upn VMmN
1t follows then, for n>=N,
ERE .

t 2 t t 2
UMn ty VMn Van

Since the sets U,, and t,V,, are in [1, €], their intersection is nonvoid;
let $,EUpgm O 1,V pgne Since 5,EUy, and $,/6,EV s it follows

K(tn xn) _ K (tn xn) K (Sn xn)
K(x)  K((s/t)tnx) K(x)

The Theorem holds for I=[e*, e**1}=e"[1, €] for each integer n. Let b and
M be positive real numbers such that

K(tx)
K(x)
For sce*[l, e] we have t=e""sc(l, €] and y=tx>x, S0 that
K(sx)=K(e"y). K(tx)sM K(ey) for each s<7I and each x>b.
K K@) K(x) K®»
The siatement then follows from the finiteness of r(e”).

The Theorem holds for any compact interval in ]0, oof since such an inter-
val can be covered by a finite number of intervals [e”, e"*+!].

<M? for n=N.

<M for each t<[1, e] and each x>b.
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2.3. Proof of Theorem 2. The proof is based on the following lemma 1
and its corollaries.

Lemma 1. Let the function p be positive, finite and locally bounded Jrom
above on 11, oo and such that o (st)<p(s)p(t) for each s and t>1. Then

t—o  logt >1  logt

Proof. It is enough to prove that

lim sup logp (1) < log p (1) for each r>1.
t—> 00 log t log t

Fix a t>1 and letp(s)<M for 1<s<<t. For n=1,2,... and 1<s<t we
have first

plst<e (e ()<Mp(r),
so that
log p (st")<<log M +nlog p (2).
Dividing by log (st")>0, we obtain
logp (st") _logM+nlogp (t)<logM+n logp (1)
log (st™) = logs+nlogt = c,+nlogt

where 0<¢,<logt. For x>t%(k=1, 2,...), there exists some integer m>k
such that "< x<tm™+1. By the preceding inequality

sup logp(x) _ sup  sup log p (1) <sup log M +nlogp (1) ,
x>tk log x k<n  m<u<emtt log u n>k c,+nlogt

and the required statement follows by letting k— co.

Corollary 1. Let the function p be positive, finite and locally bounded
from above on 10, 1] and such that o (st)<p(s) p (t) for each s and t in 10, 1]. Then

.11 lim 1080 () _  loge()
—0+ logt o<t<t logt

Proof. One has only to apply Lemma 1 to the function p (1/f) (¢>>1).

Corollary 2. Let the function p be positive, finite and locally bounded
Jrom above on 10, o[ and such that p(st)<p(s)p(t) for each s and t>0.
Denote by q and p the limits in (2.10) and (2.11) respectively. Then
(2.12) — oo <pLg< oo,

Proof. g<o and p> — o follow from (2.10) and (2.11) respectively.
Since p (1)=p(1-1)<<p (1) p (1), we have p(1)>1. Hence, I<p(D<p (/) p (0)
for each ¢>>1, and consequently —logp (1/t)<logp(f) and so

loge (1/1) _loge (7)
< .
log 1/t logt
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The statement p<{q follows by letting t— oco.
Corollary 3. Under the hypotheses of Corollary 2, we have first
(2.13) max {r?, t9}<p (¢t) for each t>0.

On the other side, for each pair of numbers p'<<p and q'>q, there exists a real
number M>1 such that

2.14) o (1)< M max {t¥, t7} for each t>0.
Proof. From (2.10) and (2.11) follows

logp(?) (<p for 011,
logt [_>/q for t>1,

so that

>t? for 0<t<l1,

>t for t>1.

p(t)[

The statement (2.13) then follows on account of (2.12) and p (1)>1.

For p'<p and q’'>g, there exist two real numbers a and b, 0<a<1<b
such that
logp (t) (=p' for O<t<a,
logt [gq’ for t>b,
or
<Lt? for 0<t<a,
<t¢ for t>b.

e
To obtain the inequality in (2.14) it is enough to take for M the supremum
of the function p(¢)/max {¢?’, t7} on the interval [a, b].

The proof of Theorem 2 is now immediate, since the function r of Theorem 2
satisfies all hypotheses required for the function p in Lemma 1 and its Corol-
laries (definition (1.3) and its immediate consequence, Corollary 2 of Theorem
1 and relation (1.4)).

2.4. Proof of Theorem 3. We shall prove Theorem 3 by combining the
statements of a number of lemmas.

Lemma 2. Let K be of the form (1.6). Then the function x~*K(x) almost
increases on I, for A<lim inf B (x) and almost decreases on I, for A>lim sup 3 (x).

X —> 0 X—>r

Remark. Using the numbers defined by (1.13), (1.13'), (1.14) and (1.14"),
the result of Lemma 2 may be stated as follows:

(2.15) 2 (K)<p; (K) and p (K)=p; (K).
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Proof. From (1.6) follows

YRR _ _ 3 o
2.16) e [+ [0 -w .

for y>x>b and for any real number .

The function exp « (x) being bounded away from both 0 and oo, and so
almost increasing and almost decreasing on I,, we can assume that «=0. For
the same reason the function K is almost increasing and almost decreasing on
every finite interval [b, c] (¢=>b). Hence, it is sufficient to prove that lemma 1
holds on some interval I, (¢=b). Choose ¢>b such that B (f)>A (<) for 1>c.
From (2.16) with p=2 then follows

y~2K(y)

¥y
dt
x_AK(x)=exP {f {8 (t)—k}—t—}>exp 0=1(<Lexp0=1).

X

for y=x>c.

Lemma 3. Let K be a positive and measurable function on I,. Suppose
that there exist two numbers o, and <, such that x—° K (x) almost increases and
that x~% K (x) almost decreases on I,. Then

.17 f 179K (1) ﬂ,‘:{x“’K(x) on I,
t
b

Jor each ¢>b and each c<o,,

(2.17) f t"TK(t)ﬂ,‘-(x“'K(x) on I
t

X
Jor each ©>=,.

Proof. The Lemma follows immediately from the properties (ix) and

(ix’) of almost monotone functions: one obtains (2.17) by putting () =1-% K (1)
- and a=0-g, in (2.8) and (2.9°), and, similarly, (2.17") follows by putting
f@)=t""K(t) and a=7—7, in (2.9) and (2.8').

Remark. Using the numbers defined by (1.14), (1.14), (1.15) and (1.15),
the result of Lemma 3 can be stated as follows:

(2.18) p1(K)<p, (K) and p, (K)<p; (K).

The previous reasoning and lemma 3 show that the sets in (1.15) and
(1.15") are intervals.

Lemma 4. Let K be a positive, measurable and locally bounded function
on I,. Suppose that for a real number o (2.17) holds for some ¢>b. Then K can

2 Publications de I’Institut Mathématique
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be written in the form (1.6), where o and B are measurable bounded functions
on I, and liminf @ (x)>o.

X—> 00

Proof For b<<x<c we can take o (x)=logK(x) and B(x)=0; hence,
it is enough to determine o and § for x>c. Let m and M be real numbers
such that 0<m<<1<M and

'm<G(x)=7ﬂL

f 1-° K (1) iiti

b -

<M for x>c.

Since
X

f G(x)"—;=[log f r-°K(t)?]y =0,
c b

and so (x>=c¢)

K(@)=x"G () bfxt—uK(z) ‘.‘;’.=[ca(;(x) bfcraK(t)fIti][(%)oexpr(t) il}]

[

Lemma 4 follows if we put

oc(x)=log{c°G(x)f - K (1) %] and B()=G()+o.
b

Lemma 4'. Let K be a positive, measurable and locally bounded function
on I,. Suppose that for a real number © (2.17") holds. Then K can be written
in the form (1.6), where o and B are measurable bounded functions on I, and

lim sup B<7.

X —> 00

Proof Let m and M be real numbers such that O0<m<I1<M and

-1
m<H(x)=—w—x-———K—()—c)~<M for x>b.

f t—fK(t)it’-_

x

Since

k()%

ro r ot !
[ H(t)—=—[log [ er(t)—] gl (D).

t t s dt

; : ft"K(t)—

. t

y
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and so (x>=b)
K(x):fo(x)ft—rK(,)£=
t

X

- {bTH(x) f 1= K(z)iji} [(%) exp f(~H(t))3j£] :
b

b

Lemma 4’ follows if we put
. _ dt
o () =log [b"H(x)ft "K(t)——] and B(x)=7—H ().
t
b

Remark. Using the numbers defined by (1.15), (1.15"), (1.13) and
(1.13") the result of Lemma 4 and of Lemma 4’ can be stated as
(2.19) £ (K)<p (K) and p (K)<p, (K).

respectively.

From the Lemmas 2, 3, 4 and 4’ follows the equivalence of Karamata’s
conditions (X)), (Kj), (K and (Kiy) by the scheme

L.4,/ (K L. 3
¥ L.2
K)——(Ky)

L. ;\(K}”) “L.3
Moreover, the relations (2.15), (2.18) and (2.19) imply
(2.20) 2 (K)=p, (K)=p,(K) and ¢ (K)=p,(K)=p, (K).
The proof of Theorem 3 completes

Lemma 5. Let K be a O-RV function of lower and upper index p and
q respectively. Then

(2.21) p=p,(K) and g=>p, (K).
Proof. We shall prove the second relation in (2.21); by applying it to

the function 1/K, one obtains the first one.

If x~* K (x) almost decreases for x>b, there exists by definition a real
number M>1 such that :

yK®»)

<M for y>=x>b.
x"“K(x)\ y=x=

2
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By putting y=x, this inequality becomes

K (tx)

<Mt* for x=b and t>1.

Hence,

r(¢t) =lim sup

X—>

K (1) <Mt* for t>=1,
(®

and by 3° of Theorem 2

ta< Mr™ for t>1.
Consequently, g<r.

If v>gq, then, by definition (1.12) of the upper index g, there exists a
number d>1 such that

logr(d)

<1 ie. r(d)<d-.
logd

Consequently, by definition of the function r, there exists x,>>b such that

K—(di)<d’ for x>x,.
K (x)

On the other hand, by Theorem 1, there exist real numbers M >0 and x;=b
such that

I;(ZC))<M for x>x, and 1<s<d.
Let N=max {1, d~*}= max s~7 and c=max{x,, x,}. If x>c and r>1, then
I<s<<d

t=sd" for some 1<s<d and for some n=0,1..., so that

K (tx) =K(sd" x) K(@d"x) o .K(dx)
K(x) K@@"x) K(d"'x) K(x)

=M(ts™ ) = Ms~"t*<MNt".

<M(d‘r)n —_

Hence, the function x~~ K (x) is almost decreasing for x>c. Being logarithmi-
cally bounded on [b, c], the same is true for b<x<c¢ and, hence, for x>=b.

2.5. Proof of Theorem 4. For the proof we have to introduce the numbers

(222)  py=ps (K)=lim inf logK() ~ u_ * (K)=lim sup 28K
X—>® log X X—> log X

for the O-RV function K.

Since x° < K(x) (x> o) for some real ¢ means that there exist two
positive numbers M and ¢ such that x°<<MK(x) for x>c¢, we conclude that

GglogM_i_logK(x) for x>c,
log x log x
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and, hence, 6<{p, (K). Conversely, from c<<p, (K) it follows that log K (x)/log x>
>a for x large enough; for these values of x one has, consequently, x*<<K(x)
ie. x3 =< K(x) (x— o). So, we proved that

(2.23) px (K)=sup {cER|x* < K(x), x—>oo}.

In (2.23) one can, evidently, substitute - by <¢, i.e. liminf x=°K(x)>0 by
lim x7° K (x)= oo e

7 Since % (K) = —py (1/K),

(2.23) p* =p* (K) =inf {tER | K (x) < X7, x—> 0},

where K (x) =< x* can be substituted ’by K(x) <« x7, ie. limsup x " K(x)<<oo
by lim x~* K (x)=0. T

X —> 00

If 0<p(K), the function x~°K(x) almost increases on I, and so is
bounded from 0; hence, x° < K(x) (x— o). It follows, therefore, p (K)<py (K)

and, dually, p* (K)<p (K). So, we have the relation
(2.24) p (K)<es (K)<p* (K)<p (K)
which, by the foregoing remarks, can be written in the form

lim x7°K(x)= oo for each oc<<p (K)
and
lim x~* K (x)=0 for each t>p (K).

X=00
2.6. Proof of Theorem 5. If o< p, then the function x~°K(x) almost
increases on I,, and by the definition and some properties of almost mono-
tone functions (especially (2.2), (viii) and (vi)) this is equivalent to each of the
relations (1.18), (1.19) and (1.20).
The dual statement follows in an analoguous way.

2.7. Proof of the Representation Theorem. To conclude, and for the sake
of completeness, we give here a proof of (1.3) & (1.6), via Theorem 1, which
may be of some interest.

Fix a b>0 such that (by Corollarys of Theorem 1) ihe function log K is
locally bounded (and so locally integrable) on I,. For s>0 and x min {1, s}=>b
one has

flog%%-{—flo 1;(:[:)) atrt {f xf f f]logK(u)_

On the other side

5

f log K (x) fl;t— =(log s) log K (x),

1
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so that, by addition,

s

KGO dt [ K(st) dt
log K(x)w}~+ log ——=-— =(logs) log K (x).
1f { K(xt)) t bf K@) ¢

Consequently, the function K can be represented in the form (1.6), where

s 5

oc(x)=ocs(X)=ggl-S-[flogK(bt)%—flog 1;—(:))5‘;’_’}
1 1

and
K (sx)
K@)

B(x)=8, ()~ — — log
log s

The functions « and § are bounded on 1, because (i) the function log {K (¢x)/K (x)}
is bounded for 1<<r<(s and b<x<c (for each ¢>b) and (ii), by Theorem 1,
there exists a number ¢>b such that this function is bounded for 1<r<s
and x>c too. Hence (1.3) = (1.6).

Conversely, if K is of the form (1.6) and |a(x)|<M, |B(x)|<N for
x>=b, one has for s>0, x>b and sx>=b

K (sx)
K (x)
Hence (1.6) implies (1.3).

=exp {oc (sx) — o (x) + f B() %]gexp (2M+Nilogs!).

REFERENCES

[11 Karamata, J., Sur un mode de croissance régulicre des functions, Mathematica
(Cluj) 4 (1930), 38—53.

[21 Karamata, J., Sur un mode de croissance réguliére, Bull. Soc. Math. France
61 (1933), 55-—62.

[3) Seneta, E., Regularly Varying Functions, Lecture Notes in Mathematicas 508,
Springer-Verlag, Berlin-Heidelberg-New York 1976.

[4] Avakumovi¢, V. G., On a O-inverse theorem (in Serbian), Rad Jugoslovenske
Akademije Znanosti i Umjetnosti, t. 254 (Razreda Matemati¢ko-Prirodoslovnoga 79) (1936),
167—186.

[51 Karamata, J., Bemerkung iiber die vorstehende Arbeit des Herrn Avakumovié,
mit niherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssiitzen vorkommen,
Bull. International, de I’Académie Yougoslave, Zagreb, 29 et 30 (1935), 117—123. (This is a
contracted version of: A remark of the foregoing paper of Mr V. Avakumovié (in Serbian), Rad
Jugoslovenske Akademije Znanosti i Umjetnosti, t. 254 (Razreda Matematiko-Prirodoslovnoga
79) (1936), 187—200.)

[6] Bari, N. K. and Ste¢kin, S. B., Best approximation and differential pro-
perties of two conjugate functions (in Russian), Trudy Mosk. Mat. Obs&. 5 (1956), 483—522.

Proleterskih brigada 62 Omladinskih brigada 212/21
11000 Beograd (Yugoslavia) 11070 Beograd (Yugoslavia)



	05.tif
	06.tif
	07.tif
	08.tif
	09.tif
	10.tif
	11.tif
	12.tif
	13.tif
	14.tif
	15.tif
	16.tif
	17.tif
	18.tif
	19.tif
	20.tif
	21.tif
	22.tif

