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0. Let (M,d) be a metric space and T a selfmapping of M into itself.
If T satisfies the condition '

Ay d(Tx, Ty)<q-d(x,y)

with g<<1 (g=1), then T is called a contraction (non-expansive) mapping. Banach
contraction mapping principle states that if M is complete and T a contraction
mapping, then 7T has a unique fixed point.

Browder [2], Gohde [7] and Kirk [9] independently have proved that if
M is a closed bounded and convex subset of a uniformly convex Banach space,
then every non-expansive selfmapping has at least one fixed point.

Goebel and Zlotkiewicz [5] have proved that if M is closed and convex
subset of a Banach space and T satisfies (A) with 0<{g<2 and T2 is identity
mapping, then T has at least one fixed point.

Many authors have discovered new classes of maps which have fixed
points as it is the case with contractive or non-expansive mappings. In [3] a quasi-
-contraction was introduced as a map T of a metric space M into itself which
satisfies the following condition:

3B d(Tx, Ty)<q-max {d(x, y), d(x, Tx), d(y, Ty), d (x, Ty), d(», %)}
: 0<{g<l.

A quasi contraction has a unique fixed point, say # and lim 7"x=u for any
x in M. n—>0o

Goebel, Kirk and Shimi [6] have extended a result of [2], [7] and [9]
to maps which satisfy the condition

d(Tx, Tyy<a-d(x,y)+bld (x, Tx)y+d(y, Ty)] +cld(x, Ty) +d (y, Tx)]

where @>0, b>>0, ¢c>0 and a+2b+2c<1. 1. Massabo [10] has obtained a
similar result for a wider class of generalized non-expansive mappings, i.c.,
mappings such that :

d(T, Ty <max {d(x, ), W0 T+, Tl 1465, T9)+d 0, Tl

assuming that 7 is densifying,
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For quasi-non-expansive mappings a similar result is not valid, even i
M is compact (see our example 1.)

In the present paper we shall extend the class of quasicontractions weak-
ing the condition (B) by conditions of the type

d(Tx, Ty)<q-max {2d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}; 0<g<]1.

Fixed point theorems which are offered here generalize fixed point theo-.
rems of Goebel and Zlotkiewicz [5] and a result of Iseki [8].

1. Be‘ore we state our theorems we shall give an example which shows
that the condition

(B") d(Tx, Tyy<max{d(x, y), d(x, Tx),d(y, Ty), d(y, Tx), d(x, Ty)}, x+£y

does not ensure the existence of a fixed point of 7, even when M is a com-
pact uniformly convex Banach space.

Example 1. Let M=[—1,1] be a subset of reals and let Tbe a self-
mapping on M defined by Tx=—§~ for x#0 and T (0)=1. Then d (7o, Tx)=

=1—§<1=d(0, To) if x>0, d(To, Tx)<1— x=d(x, To) if x<0. Therefore,

T satisfies (B'), as d(Ty, Tx)=%d(x,y) for x.y0. But T is without a

fixed point.
Now we shall prove our main result:

Theorem 1. Let X be a closed and convex subset of a Banach space
and let T be a selfmapping of X into itself which satisfies the condition

© d(Tx, Ty)<q-max{2d(x y),d(x, Tx),d(y, Ty), d(x, Ty), d(y, Tx)}
for all x,y in X and 0<q<<1. If in addition
(H g*d(x, )<d(T* x, )< g d(x, y)

Jor any x&X and y&{Tx, Fx, TFx}, where Fx=»-;—(x+Tx) and 0<a, b0

and a—b<<1, then T has at least one fixed point and for any x in X a sequence
{F" x}n_q converges to some fixed point of T.

Proof. By definition of F we have
Tx+x

x__

:

2) d(x, Tx)=|lx—Tx{|=2 =2d(x, Fx),

To— Tx+x
2

Tx+x
—x
2

3) d(Tx, Fx)= H H =d(x, Fx).
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Put
Tx+x

u=2(Fx—TFx)+TFx=2 — TFx=(x~TFx)+ Tx.

Then, using (2), we have
d (u, TFx) = || 2 (Fx— TFx) || = 2 d (Fx, TFx) = 4d (Fx, F?x).
Since
d(u, TFx)<d(u, Tx)+d (Tx, TFx)=|| (x— TFx) + Tx— Tx ||+ d(Tx, TFx)=
=d (x, TFx) +d (Tx, TFx)<2 - max {d (x, TFx), d (Tx, TFx)},

we obtain

@ d(Fx, F?> x)= % d(u, TFx)<‘;~ max {d (x, TFx), d(Tx, TFx)}.
First we assume that

5 d(x, TFx)<d(Tx, TFx).
Then by (C)

d(Tx, TFx)<q-max {2d (x, Fx), d (x, Tx), d (Fx, TFx), d(x, TFx), d (Fx, Tx)}
and using (2), (3) and (5) and noting that g<<1 one has
d(Tx, TFx)<q-max {2d(x, Fx), 2d (Fx, TFx)}.
Therefore, (5) and (4) imply

©) d(Fx, F? x)<~—;— d(Tx, TFx)<gq-max {d (x, Fx), d(Fx, F? x)}.
Assume now that
o) d(Tx, TFx)<d(x, TFx).
Then by (1) and (C)
d (x, TFx)<q~* d (TTx, TFx)
<gq™*-qmax{2d(Tx, Fx),d(Tx, TTx),d(Fx, TFx),d(Tx, TFx),d(Fx, TTx)}
<q'"*max {2 d(Tx, Fx), q* d (Tx, x), d (Fx, TFx), d(Tx, TFx), q* d (Fx, x)}
and using (3), (2) and (7) and noting that ¢'7%<1 and ¢®>1 we obtain
d(x, TFx)< g *max {2 d (x, Fx), 2 ¢* d (x, Fx), 2d (Fx, F* x), > d (x, Fx)}
<q'"*max {2 ¢*d (x, Fx), 2 > d (Fx, F? x)}.
Hence and by (4) and (7) one has

8 d(Fx, F?x) <% d (x, TFx)< q'™*+® max {d (x, Fx), d(Fx, F>x)}.

Therefore, from (6) and (8) follows that (4) implies
10) d(Fx, F2x)< g ™+ max {d (x, Fx), d(Fx, F*x)},
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since g<{q!™%*% If d(Fx, F?x)>0, then (10) reduces in
an d(Fx, F*x)<q'™*+b d(x, Fx),
as gl7**b<1. It is clear that (11) is valid in"the case d(Fx, F2x)=0.

Since g'~**5<1, by (11) the sequence {F”x},Z" is the Cauchy sequence.
By the completeness of X, there exists some element z in X such that
lim Frx=z.
As
TF"x-+Frx

d(z, T2)<d (z, F”“x)+“ 5

«-—Tz”
<d(z, F"”x)—{-—;—d(F”x, Tz)+%d(TF”x, Tz) <Ld(z, F”“x)-i——;—d(F”x, Tz) +
%qmax {2d(F"x, z),d(F"x, TF"x), d (z, Tz), d (z, TF"x), d (F"x ,Tz)}

<d(z, F"“x)+%d(F”x, Tz)+%max {2d(Ftx, 2), 2d(F"x, F**1x), d (z, T2),

[d(z, F"x)+d (F"x, TF"x], d (F*x, Tz)},
we obtain, letting » tends to infinity,

d(z, Tz)<%d(z, T2) +% d(z, Tz) = %ﬂ d(z, T2).

Hence d(z, T2)=0, i.e. Tz=z and the proof of the Theorem is complete

Corollary 1 (Goebel and Zlotkiewicz [5], th. 1). If C is a closed and
convex subset of a Banach space and if T:C—C satisfies conditions: 1°T =
L2 || Tx—Ty|| <K || x—y|, where 0SK<2, then T has at least one fixed point.

Proof follows immediately from the Theorem 1, as 1° implies that our
condition (1) is satisfied with a=b=o0 and 2° implies (C).

We shall give an example where T satisfies 2° of the corollary and (1)
of the theorem 1, but T2:£1.

Example 2. Let X=R be a set of reals with d(x,y)=|x~y| and let
a mapping T:R—>R be defined by

Tx=—x, if x>0

=—1,2-x, if x<0.
Then /
d(Tx, Ty)=d (x, y), if x=0, y>0,

d(Tx, Ty)=12 d(x,y), if x<0, <0,
d(Tx, Ty)<1,2|x|+1,2|y|=1,2d(x, y), if x-y<0
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Therefore, 2° is satisfied ‘with k=1,2, or (C) in the theorem 1 with

q =%= 0,6. Since d(x,y)<d(T*x,y)(y& {Ix, Fx, TFx}), and

max {d(T?x, y)-[d(x, )] : yE {Tx, Fx, TFx}}

is attained for y=TFx (x50) the relation (1) will follow if we show that d(7?x,
TFx)<(0,6)°d(x, TFx) for —1<b<0. But, this relation is fulfilled for
1

b= ——, as
2

d(T?x, TFx)=1,1x (=1,2x) for x<0 (x>0) and d(x, TFx)=0,9x (=x)

for x<0 (x>0) and hence d(T?x, TFx)[d(x, TFx)]‘1<(1)’;

E

<(0,6)"12,

Corollary 2. (Iseki [8]). If T:X—X is such that T?>=1 and
(D) d(Tx, Ty)<ad(xy)+Bdx T)+d(, T} «>0, B>0; a+4B<2,

then T has at least one fixed point.

Proof. Since

%2d(x,y)+2 Bé—[d (6, Tx) +d (7, Tx)]g(i‘z‘—+ 2 B)max {Zd(x, »
i
S WG T +d 0, Ty)]}

<(% +2 @) max {2d (x, ), d (x, Tx), d(», TY)}

< (% +2 p) max {2 d(x, ), d (x, Tx), d (y, Ty), d (y, Tx), d (x, Ty)};,
the proof follows from our Theorem if we put %-I-Z B=gq.

. Now we shall give an example of a mapping which satisfies (C), but
neither (D) nor (B).

Example 3. Let X=R be a set of reals with usual norm and let a
mapping T of X into itself be defined by

Tx=—10x, if x=0

=—0,1x, if x<0.
Then ‘

x<0 and y<0 imply d(Tx, Ty)=0,1 d(x,),

x>0, y=0 imply d(Tx, Ty)=}10x—10y]<10m=%$ 11m=—i~(12d(m, Tm);

m=max {x, y},
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. , 1 21
y<0, x>0 imply d(Tx, Ty)=10x+0,1(-y) <~10x+7x=5—17- 11 x=
21
=2—2d(x, Tx), for —y<5x, or

d(Tx, Ty)=10 x+0,1 (—y)<~;~(2x—-2y) =%2d(x, y), for —y>5x.
Therefore,
d(T5 TS max 245, ), 45, T, d 0, T9)}

It means that T satisfies (C) with q=§—21—, for every x,y in X. To see

that T does not satisfy (D), let x>0 and y>34 x. Then

d(Tx, Ty)=10y — 10x>3(y——x)+%(11x+ 11 y)=

~3d(x,y)+ % [d(x, Tx)+d (3, Ty)],

that is,
d(Tx, Ty)>ad(x, y)+B[d(x, Tx)+d(y, Ty)]

for a=3 and [3=—';’~. But >0, >0 and «+48<2 in (D) imply «a<<2 and

[5<—;-. Note that here T?=171 and X is convex Banach space. Therefore, all

hypotheses of our Theorem are fulfilled.
Now we shall state a some different theorem from Theorem 1.

Theorem 2. If X is a closed and convex subset of a Banach space and
if T:X »X satisfies (1) and the following condition
2
(€) d(Ix, Ty)<qmaX{2d(x, ), d (x, Tx), d (y, Ty), ?[d (x, Ty)+d (, Tx)]},

where q<<1, then T has at least one fixed point and for any x in X a sequence
{F" x}neo converges to a fixed point of T.

Proof. Since proof is similar to the proof of Theorem 1, we omit
details. We shall show only how the relation (6) follows in this case.

Assume that, for example, d(x, TFx)<d(Tx, TFx). Then by (C')

d(Tx, TFx)<{qmax { 2d(x, Fx),d(x,Tx),d (Fx,TFx), % [d (x, TFx)+d (Fx, Tx)] }

<gmax { 2d(x, Fx), 2d (Fx, Fx), % [d(Tx, TFx)+d (x, Fx)]] .
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Since the case d(Tx, TFx)<q- % [d(Tx, TFx)+d(x, Fx)] implies

d(Tx, TF)< 2‘21 d(x, Fx)<24q-d(x, Fx),
—«q
we obtain :
d(Tx, TFx)<2 q-max {d(x, Fx),d(Fx, F*x)}.
Therefore,

d(Fx,F?>x) < %-2qomax{d(x,Fx),d(Fx, F?2x)}=q-max {d(x, Fx), d(Fx, F? x)}

which is the relation (6).
In a normed space we have the following result:

Theorem 3. Let X be a closed convex subset of a normed space am
let T:X—>X satisfy the condition

d(Tx, Ty)<q-max {cd(x, y),[d(x, Tx)+d (v, TY)], [d (x, Ty) +d (y, Tx)]},

where ¢=0. If a sequence X,,,=(1—-t)x,+tTx,, n=0,1,2,..., x,&X, 0<t<1
converges in X. then T has a fixed point.

Proof Let z be in X such that

lim x,,,=z2.

We shall show shat z is a fixed point of T.
d(z, T2)<d (2, x,) + || (1~ ) x,+ tTx,— Tz ||
=d(z, %, ) +||(1=)x,+tTx,~(1 - 1) Tz—tTz ||
<d(z, X, ) + (1 = 1) d (x,, T2) +td (Tx,, T2)
<d (2, x4 )+ (1 —1)d(x,, T2)+
+ tq - max {cd (x,, z), [d(x,, Tx,)+d (z, T2)},[d (x,, Tz) + d (2, Tx,)]}
<A, Xyu) + (1 =) d (%, To)+

+ tq - max {cd (%, 2)s [% d(Xx, X, +d (2, Tz)] , [d (x,, T2)+d (z, x,)+

1
+ 7(1 (x,,, x,,+1)]} .
Letting n to tend to infinity we obtain
d(z, T)<(1—-1)d(z, Tz)+ tqd (z, Tz)

which implies d(z, Tz)=0. This completes the proof of the theorem.
The following theorem extends the Theorem 3 of [5].
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Theorem 4. Let X be a closed, bounded and convex subset of a uni-
formly convex Banach space. If T:X X satisfies (C) or (C') and

d(T?x, T?y)<ad(x,y)+b[d(x, T*x)+d (y, T? )]+ c[d(x, T? y) +d (y, T* x)),
where @0, b>0, =0 and a+2b+2c<1, then T has at least one fixed point.

Proof. By the result of Goebel, Kirk and Shimi [6], a set P of fixed
points of T2 is non-void. It is easy to verify that P is closed and convex.
Clearly that T(P)=P and T?=] on P. Hence we may apply Theorem 1 or
Theorem 2.
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