UNIQUE FACTORIZATION IN GROUP-RINGS

Keng-Teh Tan

(Received June 11, 1976)

Abstract:

We show that the group-ring RG is a unique factorization domain iff R is and G is torsion-free abelian.

Terminologies undefined here will have the same meanings as in [1].

Let R be a principal ideal domain and $G = \langle x \rangle$ be the infinite cyclic group generated by x. Let $f \in RG$. Then we may write $f = x^m (a_0 + \cdots + a_n x^n)$ for some $m \in \mathbb{Z}$, $n \geqslant 0$, $a_i \in R$. An element c of R is said to be a content of f if c is a greatest common divisor of a_0, \ldots, a_n . Cont (f) denotes the set of all contents of f. f is said to be primitive if the identity 1 of f is a f is a f c. f of f is a f c. f in f is a f c. f in f is a f c. f in f

Lemma 1: If f, $g \in RG$ are primitive, then so is fg.

Proof: Write f as before and $g = x^l (b_0 + \cdots + b_l x^l)$ for some $l \in \mathbb{Z}$, $t \ge 0$, $b_j \in \mathbb{R}$. To show that fg is primitive, it suffices to show that $(a_0 + \cdots + a_n x^n) \cdot (b_0 + \cdots + b_l x^l)$ is primitive. But this can be proved in the same way as in Lemma 3.23, [1], page 120.

Proposition 2: Let R be a U. F. D., $G = \langle x \rangle$, f, $g \in RG$. If $\alpha \in Cont(f)$, $\beta \in Cont(g)$, then $\alpha \beta \in Cont(fg)$.

Proof: Write $f = \alpha f_1$, $g = \beta g_1$ where $\alpha \in \text{Cont}(f)$, $\beta \in \text{Cont}(g)$, f_1 , g_1 are primitive. Then $fg = \alpha \beta f_1 g_1.$

Now $f_1 g_1$ is primitive. So $\alpha \beta \in \text{Cont}(fg)$.

Lemma 3: Let $G = \langle x \rangle$ be the infinite cyclic group and R a U.F.D.: with quotient field Q. Let $f \in R[x]$. Assume that f is both primitive and irreducible as an element of RG. Then f is irreducible as an element of QG.

Proof: Assume f is not irreducible in QG. Since f is irreducible in RG $f\neq 0$ and $f\notin U(RG)$, the set of units in RG. So we may write f=gh, for some g, $h\in QG\setminus\{0\}$, g, $h\notin U(QG)$. Write $g=a^{-1}g_0$, $h=b^{-1}h_0$ for some a, $b\in R$, g_0 , $h_0\in RQ$. Again, write $g_0=\alpha g_1$, $h_0=\beta h_1$, where $\alpha\in \mathrm{Cont}(g_0)$, $\beta\in \mathrm{Cont}(h_0)$ and both g_1 , h_1 are primitive in RG. Thus, $f=gh=(a^{-1}b^{-1}\alpha\beta)g_1h_1$. So $(abf=(\alpha\beta)g_1h_1)$. Now f and g_1h_1 are primitive, so ab and $\alpha\beta$ are associates. Hence $f=ug_1h_1$ for some $u\in U(R)$. This contradicts the irreducibility of f in RG.

Lemma 4: Let R, G and Q be as before and $f \in RG$. Assume that f is primitive in RG and irreducible in QG then f is irreducible in RG.

Proof: Trivial.

Lemma 5: Let F be a field and $G = \langle x \rangle$. Then FG is a P. I. D.

Proof: Clearly $F[x] \subseteq FG$. Also, for each $y \in FG$, $y = x^j f(x)$ for some $j \in \mathbb{Z}$ and $f(x) \in F[x]$.

Let A be a non-zero ideal of FG. We can pick a non-zero element $a(x) \in A \cap F[x]$ with minimal degree. We claim that A = a(x) F(G). Clearly, $a(x) FG \subseteq A$. Next, let $y \in A$, $y \ne 0$. Write $y = x^j f(x)$ for some $j \in \mathbb{Z}$, $f(x) \in F[x]$. Then $f(x) \in A$. Also, f(x) = q(x) a(x) + r(x) for some q(x), $r(x) \in F[x]$ with r(x) = 0 or deg $(r(x) < \deg(a(x))$. Thus, $r(x) \in A \cap F[x]$. It follows that r(x) = 0 by the minimality of deg (a(x)). This shows that $f(x) \in a(x) FG$. Consequently, $y = x^j f(x) \in a(x) FG$. Hence $A \subseteq a(x) FG$. This proves Lemma 5.

Proposition 6: Let R be a U. F. D. and $G = \langle x \rangle$. Then RG is a U. F. D.

Proof: Trivially RG is an integral domain. Let Q be the quotient field of R. Then QG is a P. I. D. hence it is a U. F. D.

Let $p \in RG$ be primitive. Then as an element of QG, we can write $p = p \cdot \cdot \cdot \cdot p_k$, where each $p_i \in QG$ is irreducible. Write $p_i = a_i^{-1} f_i$ for some $a_i \in R$, $f_i \in RG$. Also, write $f_i = c_i g_i$, where $c_i \in Cont(f_i)$ and g_i is primitive in RG. Then $p_i = a_i^{-1} c_i g_i$ since p_i is irreducible in QG, so g_i is irreducible in QG. Now by Lemma 4, g_i is irreducible in RG. Now,

$$p = p_1 \cdot \cdot \cdot p_k = a_1^{-1} \cdot \cdot \cdot a_k^{-1} c_1 \cdot \cdot \cdot c_k g_1 \cdot \cdot \cdot g_k$$
. So

 $a_1 \cdots a_k p_1 \cdots p_k = c_1 \cdots c_k g_1 \cdots g_k$. Since $p_1 \cdots p_k$ is primitive, so $a_1 \cdots a_k \in \text{Cont}(a_1 \cdots a_k p_1 \cdots p_k)$. Similarly, $c_1 \cdots c_k \in \text{Cont}(c_1 \cdots c_k g_1 \cdots g_k)$. Hence $p = p_1 \cdots p_k = ug_1 \cdots g_k$ for some $u \in U(R)$. This shows that every primitive element of RG is a product of irreducible elements in GR.

Next, assume that $p = r_1 \cdots r_l$, where each $r_j \in RG$ is irreducible. Since p is primitive, so is each r_j . Hence each r_j is irreducible in QG. But QG is a U. F. D., so l = k and for some $\sigma \in S_k$, r_j and $g_{\sigma(j)}$ are associates. This shows the unique factorization of primitive elements in RG.

Finally, let $f \in RG$ be arbitrary. Write $f = cf_1$, where $c \in Cont(f)$ and $f_1 \in RG$ is primitive. Thus, f_1 is a product of irreducible elements in RG. Also, since R is a U. F. D., c is a product of irreducible elements of R, hence also a product of irreducible elements of RG. It follows that f is a product of irreducible elements.

ments of RG. Now combining the unique factorization of f in the form cf_1 with $c \in R$, f_1 primitive and the unique factorization of c and of f_1 , we have proved the Proposition.

Corollary: Let R be a U.F.D. and G be a finitely generated torsion-free abelian group. Then RG is a U.F.D.

Proof: Indeed, since G is finitely generated torsion-free abelian, then $G \cong c \times \cdots \times c_n$, where c_i is infinite cyclic. But then $RG \cong (Rc_1) (c_2 \times \cdots \times c_n)$, thus we may apply induction to complete the proof.

Lemma 7: Let $f \in U(RG)$ and H be the support group of f. Then $f \in U(RH)$.

Proof: Let $g \in RG$ be such that fg = gf = 1. Write $g = g_1 + g_2$ with Supp $(g_1) \subseteq H$ and Supp $(g_2) \cap H = \emptyset$. We note that for $a \in H$, $b \in G$, $ab \in H \Leftrightarrow b \in H$. Thus, from fg = 1, one has $fg_1 + fg_2 = 1$. Thus, it is clear $fg_2 = 0$. Hence $f \in U(RH)$.

Lemma 8: Every torsion--free abelian group can be fully ordered.

Proof: [2], Lemma 26.6, page 113.

We are now in a position to prove the following

Theorem: RG is a U.F.D. iff R is a U.F.D. and G is torsion-free abelian.

Proof. (\Leftarrow). Assume that R is a U. F. D. and G is torsion-free abelian. Let $0 \neq f \in RG$ and H the support group of f. Then H is finitely generated. Thus RH is a U. F. D. and $f \in RH$. Hence $f = f_1 \cdots f_n$ for some irreducible elements $f_i \in RH$. We claim that each f_i is also irreducible in RG. Indeed $f_i \neq 0$. Next, assume $f_i = \alpha\beta$ for some α , $\beta \in RG\setminus\{0\}$ and α , $\beta \notin U(RG)$. Let K be the subgroup of G generated by the supports of G and G. Let G is a unique of G. Then G is finitely generated and G is a unique of G is a unique of G is a contradiction. Hence either G is a no proper factorization in G is a unique observe that none of the G is invertible in G otherwise by Lemma 7, G is would be invertible in G is invertible in G otherwise by Lemma 7, G is the theorem.

(\Rightarrow). Assume that RG is a U. F. D. Then R is an integral domain and G is abelian. Next we show that G is torsion-free. Assume $g \in G$, $g \neq 1$, $g^n = 1$. Let $x = 1 + g + \cdots + g^{n-1}$ and y = 1 - g. Then $x \neq 0$, $y \neq 0$, but $xy = (1 + g + \cdots + g^{n-1})(1-g) = 0$, contradicting the assumption that RG is an integral domain. Hence G can be fully ordered by Lemma 8. Finally we show that R is a U. F. D. Let $0 \neq a \in R$, $a \notin U(R)$. Since RG is a U. F. D., $a = f_1 \cdots f_n$ for som irreducible elements f_i in RG. We claim that for each i, $f_i \in R$. Write

$$f_i = a_{i1} g_1^{(i)} + \cdots + a_{ij_i} g_{j_i}^{(i)}$$

with $g_1^{(i)} < \cdots < g_{j_i}^{(i)}$. If $j_i > 1$ for some i, then $f_1 \cdots f_n$ would contain at least two terms: $a_{11} \cdots a_{n1} g_1^{(1)} \cdots g_1^{(n)}$ and $a_{1j_1} \cdots a_{nj_n} g_{j_1}^{(1)} \cdots g_{j_n}^{(n)}$, a contradiction. Trivially, f_i is irreducible in R. Next, in view of the fact that the units of RG

are trivial (that is of the form ug for some $u \in U(R)$, $g \in R$), and the above proof, we note that an irreducible element of R is is also irreducible in RG. Thus the uniqueness of factorization in R follows from that in RG. This completes the proof of the theorem.

REFERENCES

- [1] I. N. Herstein, Topics in Algebra, Blaisdell Publishing Co., 1964.
- [2] D. S. Passman, Infinite Group Rings, Dekker, 1971.

Department of Mathematics University of Malaya Kuala Lumpur Malaysia