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Abstract

The object of this paper is to evaluate the integrals involving the product
of H-function, generalized hypergeometric function of two variables and Hermite
polynomials with the help of the finite difference operator £. This integral has
been used to obtain a solution of a problem of heat conduction and also an
expansion formula for the product of H-function and generalized hypergeometric
function of two variables.

1. Introduction

Recently, Fox [6, p. 408] has introduced thz H-function in the form of
Mellin-Barnes type integral as
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where {(a,, e,)} represents the set of parameters (a,, e), ..., (ap €,), x is not

equal to zero and an empty product is interpreted as unity; p, ¢, n and [/ are
integers satisfying 0<{n<Cq, 0<CI<p; ¢;(j=1,...,p) f(h=1,..., q) are positive
numbers and a;(j=1,...,p), b,(h=1,...,q), are complex numbers. L is a
suitable contour of Barnes type such that the poles of I' (b;~f5) (j=1,2, ..., n)
lie to th> right and those of I'(1—a;+e;s) (j=1,2,...,/) to the left of L.
These assumptions for the H-function will be adhered to throughout this paper.

In our present work, we shall require the following results [7, p. 33 with
w=1],

(1.2) Eof (@) =f(x+ 1)
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and [2, p. 2, (2. 1)]
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Appell and Kampé de Fériet [1] have defined a generalized hypergeometric
function of two variables as
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where («,), (o)y+n and («), stand for o, ..., «p (@ )mins -+« s (Ap)yen and
T (x+r)/T" () respectively. The series given by (1.4) is absolutely convergent
when X' +p'<v +6" + 1.

Also for special values of A, p', v and o’ the function defined above
degenerates into the double hypergeometric function [5] namely F,, F, F, F,
®, and ¢,. ‘

In this paper we have evaluated an integral involving the product of
H-function, generalized hypergeometric function of two variables and Hermite
polynomial. This integral has also been used to obtain the solution of a problem
of heat conduction given by Bhonsle [3].

2. Integral
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On multiplying (1.3) by ":1 i1
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and applying the operator exp. {E, E, EZ-{-Ea Eg E‘;},
we obtain
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The change of order of summation and integration is permissible here
under the conditions given in (1.3) and (1.4).
3. Heat Conduction

Recently Bhonsle [3] has given the solution of the partial differential
equation
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where u(x, t) tends to zero for large values of ¢ and when [ x|— o0, as
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(3.2) u(x, t)= § A, 7 H (x).

The equation (3.1) can be associated with a heat conduction equation
[4, p. 130]:
ou
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provided that uy=0 and hA=kx2.
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When ¢=0, let
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Now multiplying both sides of (3.4) by H,(x) and integrating from - e to
o« with respect to x and making use of the orthogonality property for the
Hermite polynomials [5, p. 289, (9) and (11)]. we get
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With the help of (3.5), the solution (3.2) becomes

R S § (09 ) [OXC2) () (%)

(36 u(x, - ,,Zs=o , gA:
H Oy H CANCID) @
i=1 i=1

—(1+2p) kt—
e

o
a,e)t, |1 +o+rd+sd———,m
2H (%) Hyiiga| 2 22m e} ( j . >}

(14+2p+4+2rd+2sd, 2m), {(bq>fq)}

where conditions of validity being the same as given in (1.3) and (1.4).
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4. Expansion
From (3.4) and (3.5), we have
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above is the expansion formula for the product of H-function and generalized
hypergeometric function of two variables; the conditions of validity belng the
same as stated in (1.3) and (1.4).

I wish to express my sincere thanks to Dr. R. C.S. Chandel of D. V.
College Orai for his help in the preparation of this paper.
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