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DIFFERENTIAL EQUATION I

B. Stankovié
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From all the differential equations for Mikusinski operators the differential
equation:

n

) 2 % ExP®)=0,

where a, (s) are polynomials in the differential operator s with numerical coeffi-
cients:

d
2 a4 ()= > oyys d<m, k=0,1,...,n
i v=0

is of the biggest interest to applications, The numerical linear partial differential
equations with constant coefficients reduce to them. Qur aim is to construct
for equation (1) simple and good studied operators which approximate, in a
special sense, the solutions of equation (1). The needed calculations are accom-
.modated to the use of a computer. Finally we shall apply these results to the
partial differential equations for numerical functions.

To make a unity of this material we shall briefly repeat some known
notions and results (see [4]) and give also some new ones. Our results are not
given in a form: theorem-proof. Because here are important not only single
results but the access and idea. The main result is that the approximate solu-
tions, if the solutions are from €, % or ', are expressed by a unique class
of functions (the class of Wright’s functions).

1. The field of Mikusinski operators

The ring € is the ring of continuous complex valued functions defined
over [0, co) with the operations: sum and finite convolution:

fre={ [ ft—uw)g(w)du}.
0

We denote by f or {f()} the representation of f(t)C€,«) in €.
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The ring _& is the ring of local integrable functions over [0, o) with
the same operations as in €. The quotient field of these rings is the field _#/
of Mikusifiski operators. The both rings € and _% have not the unit element.
The field _# is not algebraically closed.

1.1 Binary relations and the operator of absolute value in &

In & we shall define two binary relations:
I<g < f(<g @), 1€]0, =)
f<rgefO<g®, <0, T

The first one is an ordering relation.

By |f| we denote the mapping & into & :f—|f|={|f(¢)|} which be named
the operator of absolute value. It has the following properties which we need:

L |f+gl<[f]+]gl;
2. |af|=|a|/f|, « complex number;
t
3. 1g ~{| [ f—ug@dul}<|t]]g];
0
4. If for a fixed f there exists M (T, f)= sup |[f(?)],
0T
then |f|<+ M (T, f)I, where I={1};

5. For a complex number a:
|@+Drgl< S @l g]<(ja|+[f)"] 8]
k=0

-1 Tr-1
6. Ir= L 1, .
7 { } Ty * =1

T'(p)

1.2. Convergence and approximation in M

The sequence {a,}C 7 converges to ac_/ if and only if there exists an
element q& 7 such that {qa,}C¢€ and for every T<<co {qa,} converges uni-
formly ‘in [0, T] to qa.

The defined convergence class is not topological and the sequential closure

of a subset SC_7 does not always satisfy the condition S=§ (S is " the clo-
sure of S).

Definition. The operator a approximates the operator b with a factor
qC Al and a measure ¢ if ¢-'(a—b)&_F and |q~'(a—b)|<c/; the operator a
approximates locally the operator b with a factor q< _# and a measure =(7)
if g '(a—-b)& ¥ and |q~l(a-b)|<+c(D)L

If q=1I, our definition gives the classical approximation in _%. If there
exists M (T, f) and [f-'(a—b)| <1e(T)/, then [a—b |+ M(T; f)e(T)
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1.3. Mappings of an interval into M

Let A be an interval in R or a domain in €, then a(X) means mapping
which maps A into _#. We say that a(2) has a derivative a’ () in A if there
exists q<_g such that ga (W) ={b (%, )}, where b(}, t) is a numerical function
of two variables which has the continuous partial derivative b, (&, f) over A x R*;
then by definition a’ (A)=q~ 1 {b", (A, £)}.

2. Existence and the construction of the solution of equation (1)

The linearly independent solutions of the homogeneous equation (1) are
of the form:
3 X(N)=MevY, i=0,1,...,k-1,

where w is a k-tiple zero of the polynomial:

. n dy
“4) FW =73 a()W, a. ()= > oy d<m
k=0 v=0

(see [4] pp. 269—272 and 481).

The analysis and the construction of the solution of equation (1) require:

— To find the zerfos of the polynomial F(w).

— To establish the existence of the exponential operators (3) for the
found zero w.

— If the exponential operator (3) exists, it remains to analyse its cha-
racter: is it an element of &, _&, a distribution or only an operator.

2.1. Zeros of the polynomial F (w)

F(w) is in reality a polynomial in w and s. The equation

n 4

) FsW=S S tus'W=0

k=0 v=0

gives the zeros of the polynomial F(w) as a function of s. To find these solu-
tions of equation (5) we shall use the theory of algebraic function ([1] pp.
153—213). v
Let us multiply relation (5) by the integral operator to the power
m>=max d,, 0<k<<n:
n dg
©6) S S aulnvwE=0

k=0 v=0

We shall consider now the correspondent polynomial in z and w; z and w are
complex numbers:
n. dr

) Fz,W= 3 3> ouz""wk=0

k=0 v=0
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As the ring of convergent numerical power series > a;7 is isomorphic
i=0
to the ring of operator series ¥ g, it follows from the theory of analytical
i=0
functions that the solutions of the equations (6) are of the form:

_a i
®) : w=17S al”, ¢ pEN,

i=0

where q=0 if d,=m and if d,<m g can differ from zero.

To prove that the series (8) converges in _/,, it is enough to use the fact that
the correspodent numerical series > q z!7 converges for at least one value 2,70
iz=0
Then for every i>i,
£ KA C Ly
a;|<Cl|z,|" andlg; I” | <1< (T/|z,|)* ,
< Cllz )" andja | <L (|2 ) 5o

which shows that the series (8) converges in _/.

2.2. Existence of the- exponential operator

We know ([4] p. 442 and [5] p. 224) that e'¥, where w is given by

series (8), is an exponential operator if i<1 and A complex, or 121 and A g,
p p

real. In the other cases, i> 1, e*" does not exist.
4

2.3. Character of the exponential operator

Our exponential operator ¢** where w is defined by relation (8) contains
in reality operators of two forms:
i
—_—— 4
exp(—pl-%, «>0 and &, f= 3 g’ , 2 _g>0.
izi p
The character of the exponential operator exp (—u /%), 0<a<1 is ana-
lysed in [6), [8] and [11]:

1. 0<a<1 and ]argp.]<%(1—oc)

100, —a; —pt ), ££0
exp(—ul““)=[ ( wae), 1 }
0 , t=0

® is the function of E. M. Wright [12]. We see that our operator is from €.
For the special cases «=1/2 and a=2/3 see [10] pp. 115—116.
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2. 0<a<1 and [argM:%(l—a).

In this case

exp(—y.l”“)=sl”2{t—1/2d> (_%, —a _Iureig(l—a)it-o: )} .

If 0<oc<%, it is a distribution which is not a function, and for %<oc<l
it is a function which is not Lebesgue-integrable over [0, T], T>0.

3. O<a<1 and n>|argpj>%(l - o). The operator exp (—p /=% is an
operator which is neither a distribution nor a function.

4. exp (—pl~)=e7#s, u>0 is the translation operator.

5. e, fc_ P, then (f—1)C_%. In special case f=wl* a>0, u complex
number, we have exp (w/9)=I+{t-1® (0, «; ®t%)} where @ is the function of
E. M. Wright [13], [10]. If 0<a <1, exp (u /%) —1I is from s ifaz=1, exp(ul)—1
is from €. It is easy to prove this:

exp (‘L l“)=I+S S: _I_cl_'_y'klock+1
k=1 K.

oo y«ktqk
=I+s{ S }
k=1 T (k+ DI (wk+1)
w k pok—1
k=1 T(k+ 1T (k)
=I+{r 1 ®(0, ¢ w1%)}
We used here that 1/T'(xk)=0 for k=0.

3. Numerical computations

3.1. Calculation of plq and a,

We saw that g/p and a, determine the existence of the equation (1). To
find these two numbers we suppose that w is of the form (8) and that it satis-
fies equation (6). The least degree r of / has to appear at least twice, for k=j
and k=i

©) r=m—d-Ljem-d-Licmag-Lr, k=01, . .n
P y4 p

Whence

(10) d+Lj—a+Lizq+ Lk k=o01.....n

p p p
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The system (1) gives 4 and is suitable to be treated by a computer.
The coefficient of I* gives a,. This has to be a simple zero of the polynomial:
(1 1) Q (ao) = ai,di a0i+ aj,dj a0j+ oo

and the polynomial (7) has to be irreducible.

3.2. Computation of other coefficients a,

We suppose that the polynomial (7) is irreducible. Now we can introduce
a L
©=1I”w, I” =u in (6) and we shall obtain a polynomial in u and «. It can
be written in the form:

1
P(u, (x))= Z z -I;'—"‘Puv’mk (0, ao) w (C!)—ao)k
k=0 v=0 K-V

The coefficient of w—a, is P, (0, a))= Q' (a,)#0.
Now we can write:

1 n 1
_ ’ —-—-Puv k O’ alw(o—a k.
Q' (@) K=o vZo klv! ot (0, ag)w( 'o)

In this double sum we have to omit the couple of indexes (1,0). Using the relation

(12) 0—ay=

w—a,= > au we have all the coefficients from the relation (12):

i>0

a=- . P,0, ay)
0’ (ay)

a,= — ! [—1— P, (0, ay)+ 4 P, (0, a)a’+ P, (0, a) al]
Q' (a) 2 2

4. Approximation of the solution of equation (1)

~ We saw that the linearly independent solutions of equation (1) are of the
form (3) where w is given by the series (8). We shall give in this general
access approximations just of the linearly independent solutions because they can
be used for the construction of the solutions of the nonhomogeneous equation
n
S a6 xH ()=10)

k=0

as for initial so for boundary value problem.
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Let us suppose that we have computed the first i, coefficients a; so that
ip>q. As the approximate solution of equation (1) we shall take:
. .. i—q
Ig ——
exp( >al” )
i=0
The difference from the exact solution is:

. i—q i—q
(13) exp(k%ai )[exp()\ > al )——I]-
i=0 izig+1

One can ask the following questions:

— Find the factor and measure of this approximation.

— Give an appropriate form for the approximate solution.

— If the approximate solution is from _%, find an approximation of it
suitable for a computer.

In 2.3. we saw that the function of E. M. Wright have a special role.
This is the reason that we shall cite some of the well known results (see [2],
[10], [12], [13]) for the Wright’s functions we need it in the later:

1. Expansion in a Taylor series of the function ®

<I>,;z=°:‘ z , 0or ~1 0.
. 63 2) ,,%o T+ (pn+p) e ==

2. Bounds of the function @

bl

Proposition A. Let A=e¥, 0<o<1, B<1, >0 and[oc]<12t~(1——c)

then ,
|51 B, — 03— h1-9) |<—C r(l‘ﬁ)
2o c
where
Bt g1
C =cos °(oc+ﬁ)+cos °(oc——ﬂc—)
2 2

3. Approximation of the function t-'® (0, — o; —At79),

0<e<1, in a neighbourhood of zero

1 ] 1
10 (0, —o; —Az—°)<(@)‘*° eXP[~(1—o) c'™° (i)“", 222 a0
t te t° g%
T2 ' T2r+1
71D 0, —o6; —At9) CQ2n+1)+- C(2n+2)
Qn)! @2n+1)

for every ncc/f, 0<t< T, where

&

L3

C(k)=—1~r(£)[cos (oc—gi> —l—cos"(zx +E)J
GTT G 2 2

Q
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We need also a bound for |g;|, i=i,+ 1, where a, are coefficients in (13):

This bound can be found in different manner for different special cases.
So it can be used the Cauchy integral form and the inequality for the Taylor
coefficients. We have only to introduce two new variables v=wz%? and u~z'/?
in (6). But in this case we need a bound M for the function defined by the
Taylor series. In general case when we do not know it, we can use the following
results: [9].

Let D(z) be the polynomial in z obtained after the elimination of w from

7) and f)—fﬂQ:O. We denote by S, S, and S; the following sets:
( ow 1 3

dn
SlE{Z, Z ocn,vz’”'“"=0}, SZE{Za D(Z)=O},

v=0

. dy

S3E {Z, z %o, v ZMmV = 0} .
=0

Proposition B. Let (K, g) be a cannonical element which satisfies equa-

tion (7) with its center in the point ad:S,. We suppose that the radius p of the

3

circle K is: p<min|z—a|, z& U S; then for the Taylor series coefficients a,
i=1

of the cannonical element (K, g) we have:

2

1a,,|<—“—ne2|a01(1———~
P n+k+1

k-1
) (n+kym1, k=0, n+k>4

4.1. Factor of the approximation

The factor of the approximation in our case, as we can see from (13) is
the product of elements analysed in 2.3.

If such an element belongs to € or _Z it is always expressed by one of
the function of E. M. Wright and the cited properties can be used to make a
valuation or an approximation of it by polynomials, which is very suitable for
a computer,

, i-q
4.2. Approximation of the element > a;1”
izigt1
i-q
Our supposition is i,>¢. To make a valuation of > al” we shall
izig+1
use the found bound for |g;|. In all cases there exist a M and a r such that

la;|<Mri, ii, Now
> g li-org D |a|li-op
I3 1

izig+1 izig+1

Z 2 | @pigr1 | 10T
i=0 {
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< Myiot! [Go+1-a)lp (ritipys -

i=0
(Mrioﬁ-l JGo+1—-adlp I
I—rite
. © 1
ngio"Fl l(io+1'—‘1"ll)/l’ {p f (o) (0, _.J_; —xt p ) e _d_{}
P X

For the last inequality see [3] p. 200, relation (4).
We can take an other estimation of our sum:

> a li-ale > | @jipe1| 1 ++1-p
i=ig+1 j=0 -

K MGo+1=g=D)lp pio+1 > i JUi+)lp
=0

< T Mlot1=alp piot+1 3 ,«i_j;ﬂp___,
=0 1“(—]—+ 1)
p

- - '/
htl-g and  v=Mrotl S g Ll
p N

=0 I“(—j—+ 1) .
P

where &=

It is easy to find a bound for v.

4.3. Measure of the approximation

, Now it is easy to find the measure of the approximation using the rela-
tion (13):

lexp(h 5 g li-9k)—]]|

izi+1
*° 1 . ,
=S @ a, 16~y
121 k! i;%—}-l '
=1

< A S alt-ab
=1kl 2

< S }:T(]k[vla)kgTexp(!')\jyls)—l={t‘1®(0, 51 vi%)}
k=1 1.
where v and 3 are given in 4.2.

For the approximation of the function t~1® (0, §; [A| v#3) by the Taylor
polynomial see 4. relation 1. The bound of the factor of approximation, when
it is a function, is given in 4. proposition A.

{3 Publications de I'Institut Mathématiquie
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5. Application to partial differential equations

5.1. Operator differential equation which corresponds to a partial differential
equation :

Using the introduced notations, to the partial differential equation for the
numerical functions

(14) S gy Xm (A H=o(,1)
p=0 v=0
A <AL, 0<<t<< oo, corresponds operator differential equation:
(15) > a4 (s) KM =1f(R), A, <AL,
k=0
where
dy
(16) @G ()= > %8, d<n k=0,1,...,m
v=0
and
n—1 m n
an fR={e0 3+ 313 3 iy, (0
k=0 p=0 v=0

The exposed theory gives now the approximation of the linearly indepen-
dent solutions of the homogeneous part of the equation (15), which we use to
construct the solutions of the equation (15).

At the end let us remark:

1. The exposed theory can be applied only for partial differential equation
of the form (14) with a domain: A, <ACA,, £220.

2. Initial conditions are given in the sum (17). We do not need to know
every addend x;*,°(A, 0) but all the sum

Oy, m—ie—y X2, (25 0), k=0,1,...,n—1.

(18)

<
v

0

=
\ZE]

So, Cauchy initial condition is not equivalent to the given sums (18).

3. The solutions of the equation (15) are not always the solutions of the
equation (14). Even then the solutions of the equations (15) are defined by func-
tions; They can be solutions of the equation (14) in a generalized sense.

5.2. Diffusions equation

The equation

. 2 ‘
oU (x, t)=At) U@, t)+BaU(k, t), 40
ot 022 oA

(19)
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is the first diffusions equation. We shall apply our theory to it. To the equation
(19) with the initial condition U (0, 2)=0 corresponds in _/

Fu) | du@) _
(20) A B D s () =0

The relation (6) in this case is:

Alw*+Bw—1=0 or Aw?+Baw—1=0(w=07"2w, [12=y),

Whence
—But)/ B ul+44
- 24
co 2k
e A2 )
24 V4 S\ k J\2y4
and

W= :b;l_llz—iié i (1/2\) (iz)klk—m.
V4 24 V4 &\ k ) \44

The linearly independent solutions of the equation (20) are given by:
1 B 1 = {1/2\( B\
21) o, ()=exp| an[peg B L = 1k—1/2)
Gh e p[ (VA 24 4 k;(k )(M) ]
The general solution of the equation (20) is:
u@)=c,u; A +c,u, ()

¢, and c, are elements from _# which have to be determined by some addi-
tional conditions.

One approximation of operators (21) is

7y i (12 [ B\
w,, ~verB2exp| o2 (-1 4 B Y g
12 () p[ VA( k;(k)(u) )]

: A ‘ A
If A is such that ——== —u or——— = —p, p>0 then the correspondent u, (A
VA @ VA s B , (M)

is a function and

uk(k)we‘w/“{t“lcb(o, —%; —p.t‘l'z)}x

X;ﬁ[l [{t“ltb(o,k—%, ~p,(1]/€2) (Zl%)kzk—m)}ﬂ] |

- 1/2\ { B> \* . .
The coefficients X ) H) are with the alternate sign so:

o 2 \k 2 \ip 1
S (1/2) (f_) poirg (_1/2 ) (-B—>° Iy, > 1
k=igr1 \ k 44 i+ 1 44

13+
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o 1/2 B? \ti L
The numbers § and v from 4.2. are 3=i,+1/2, v=( ) (—) . Now it is
i,+1/\44
easy to find the measure of the approximation.
We remind that the product in the expression for w, (2) is the second
operation in the field / and that its restriction on _% is the finite convolution.
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