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It is known [1], [2], [3] that if G is a non-empty set and the quasigroup
operations defined on G satisfy the generalized equation of associativity or tran-
sitivity, for elements in G, then the quasigroups are isotopic to a group. Also,
if the generalized bisymmetry equation holds, the quasigroups are isotopic to an
Abelian group.

These results have been extended to the case of generalized associativity
and bisymmetry equations on GD-groupoids. In this paper we consider the gene-
ralized transitivity equation on GD-groupoids and obtain results similar in nature
to those found in [1], [2], [3] and also obtain results concerning the generalized
associativity and bisymmetry equations on GD-groupoids in [4], [5] by reducing
them to the transitivity equation. .

Definitions. Consider non-empty sets S,, S,, S and a mapping
T:8, xS, 5. Then the ordered quadruple (S,, S,, S; T) is called a generalized
groupoid or a G-groupoid. Also, for the sake of brevity, we occasionally become
less formal and merely refer to the mapping T as a G-groupoid or as a G-groupoid
on S, S, and S. If for every a&S,, bES,, cES, the equations T(x, b)=c,
T(a, y)=c are solvable for x&S, and y<.S,, then the G-groupoid T is called
a GD-groupoid. In the case when the solutions are unique, the GD-groupoid T
is called a G-quasigroup. We use the following notations.

Ry (b)x=T(x,b), Ly(@y=T(a, y).
A G-groupoid (S}, S,, S; T) is homotopic to a G-groupoid (S,’, S,’, S'; T') if
there exist three surjections «:S,— S, B:S,— S,’, v:S— 8 such that
vI(x,y)=T (ax, By) for every x&S,, y<S5,,

(in which case the ordered triple [«, B, v] is called a homotopy).

The generalized equation of tranmsitivity

Theorem 1. Let (S, S;, S B), (5, 8, S5:C), (S, S5, S; 4) and
(S,, S,, S; D) be GD-groupoids satisfying the generalized transitivity equation

(1) A (B(x, u), C(y, w)=D(x, y)
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Jor all x&S,, y&S,, u< S, with the mappings Ly (x):S,—~>S, R, (»)=S,~8 and
Re(u):S,— S as bijections for each x&S,,veE S, ucS,. Then there is'a group
S (o) homotopic to each of the given GD-groupoids.

Proof. Put u=ecS; in (1) to get
@) A(R,(€) x, Rc(e) y)=D (x, y), for xES,, yES,.

Choose t&S;, a<S, arbitrarily and fix them. Then define an operation (o)
on S as follows. -

3) sor=AR,({t)"1s, Re(e) Ly(a)~1r), for s, r&S.
This can be rewritten as
4) A(p, @) =R, (@t)poLpy(a)Rc(e)71 g, for p& Sy, & S;.

Since R (1), Lp(a), Rc(e) are bijections, the operation (o) is well-defined
on the set S. Also, S(o) being the homotopic image of the GD-groupoid A4
under the homotopy H=[R,(#), Ly (a) Rc(e)"}, 1], S (o) is itself a GD-groupoid
[4]. Now, we will prove that S(o) is a quasigroup. It is enough to show the
uniqueness of the solution of equations, that is, the left and the right cancel-
lativity of (o). Let s,or=s, r. Then, since R,(v) is a bijection, by (3) it follows
that R,(1)"1s;=R,(H)"1s,, which in turn yields s =s,, proving the right-
-cancellativity of (o). ‘

Now let sor,=sor,. Then by (3) we get

&) AR ()75, Re(@ Lp(@7'r) = AR (®)7's, Re(e) Ly (@)1 ry).

But since B is a GD-groupoid, there exists x< S, such that B(x, )= R} (H)1s,
so that (5) becomes

(6) A(B(x,e), C(Lp(@)7'ry, e)=A(B(x, e), C(Lp(a)'r,, €).
Now (6) and (1) yield
) D(x, Lp(@ 'r)=D(x, Lp(@)~'ry).

Since L, (x) is a bijection, it follows from (7) that L, (a)"1r,~= Ly (a)~1r,, that
is r,=r,, showing that (o) is left cancellative. Thus S(o) is a quasigroup.
From (2) by means of (4), we get

®) D (x, y)=R4(t) Rg(e) xoLy(a) y.

By hypothesis, for every u<S,, v&S;, there is a unique y& S, such that
) CO,u=v,

or there exists H:S; xS,— S, such that

(10) H(u,v)=y.
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Substituting (9) and (10) into (1), we get

an A(B(x, u), V=D (x, H(u, v)).

Setting v=t& S5 in (11), we have

(12) P (t)B(x, u)y=D(x, Ry(t)u).

By putting x=a& S, and v=1&S; in (11), we get

13) R, (1) Ly(@)=Lp(a) Ry (2).

From (12), using (8) and (13) we get

(14) B(x, u)=R, (1) (R (t) Ry (e) xoR ,(t) Ly (a) u).

For x=a, (11) gives
A(Lg(@)u, v)=Lpy(a) H(u, v),

which by the use of (4) yields ‘
(15 H@u,v)=Ly@ (R, (t) Ly(a)uoLp(a) Rqo(e)71y).
Substituting (4), (8), (14) and (15) into (11), we obtain
(R4 () Rg(e) xoR 1 (t) Ly (@) u)o(Lp (@) R (€)™ )
R, () Rp(e) xo(R (1) Lg(ayuoLy(a) Re(e)™ ).

177

This shows that operation (o) is associative. Thus S (o) is a group. From (10)

and (15), using S(o) as a group, we have
y=Lp@ (R, () Ly(@uoLp(a)Re(e) 1),

. Lp(@)y=R,(t) Ly(@uoLy(a) Re (&)™,
so that, (9) gives

that is

(16) CO,wy=v=Rc(e) Lp(@) * (R () Ly(@)u)" 1oL, (a) y).
This could be rewritten as
an (Lp(@)y) to(Ry(t) Ly(@)u)=(Lp(a) Re (&)1 C(y, wy) L.

From (4), (8), (14) and (17), it follows that 4, D, B and C are homo-

topic to the group S (o). This completes the proof of the theorem.
With R,(t)=«, R,(t)Rz(e)=2, Lp(a) Re(e)™1 =B,
Lp(@=38 and R (t)Lz(a)=¢, (4), (8) (14) and (16) can be written as
A(p, g)=apofy.
D(x,y)=rx03y.
B(x,w)=a"(Axopu).
Cy, u)=p"((pu) ™08 y).

We introduce an equivalence relation in the set of all surjections from a
set M onto a set N in the following way. a~p if there exist fixed elements
a, bc N such that for every x&M, ax=ax*Bx b, where N(%) is a group.

Thus we have the following theorem.
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Theorem 2. If the four groupoids A, B, C and D satisfy the hypotheses
of theorem 1, then the general solution of equation (1) is

A(x,y)=axoBy

D(x, y)=Ax03y

B(x,y)=a"t(Ax00y)

C(x, »)=P 7 ((py) 1o8x).

where (o) is a group which is unique upto isomorphism, and the mapping o, B, A,

3, ¢ are unique upto equivalence. Conversely, if A, B, C, D are of the form (18)
then they satisfy equation (1).

(18)

The generalized associativity equation.
We now use Theorem 1 to obtain the following known result (see [4]).

Theorem. 3. Let (S,, S5, S; 4); (S, S5, Sys B), (S5, S5, S, H), and
(S,, S,, S: D) be GD-groupoids. If the generalized associativity equation

(19) A (B(x9 u)9 z)=D(x, H(ua Z))

holds for all x=S,, uc S,, z& S, and if the mappings Ly (x): S, =S, Ly (u):S;—S,,
R, (v):S,—S are bijections for each x&S,, ucS;, vESs, then there is a group
S (o) homotopic to each of the above GD-groupoids.

Remark: In Theorem 3, we assume that L, (u) is a bijection for each
u&S,, which is not required in [4]. It is not possible without this additional
condition to pass from the associativity equation to the transitivity equation
which is the method adopted in the following proof.

Proof. From the above hypothesis it follows that for each u&.S, and
each y~S, there is a unique z=.S; so that

(20) H(u, 2)=y

and so there exists a mapping C:S, x §,—S; such that

21 ' C(y,u)=z.
Also it is easy to see that (S,, S;, S5; C) is a GD-groupoid. Then (19) reduces to
(22) A(B(x, u), C(y, w)=D(x, y)

for all x&8,, ucS,, y=S§, which is merely the generalized transitivity equation
(1). From (20) and (21) it follows that R.(u)=Ly(u)~! for each u<S,. So,
in addition to R,(v) and L, (x) being bijections, it is also true that R.(u) is a
bijection. Hence, we can appeal to Theorem 1 and conclude that there is a
group S (o) homotopic to each of the GD-groupoids 4, B, C and D.

- Now let [«, B, y] be a homotopy of C onto S (o). Then

(23) ayoBu=yC(y, u)
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for all. y=S, and all u&S,. For each ucS; and z& S, there is a unique
yES, so that C(y, u)=z and H (u, z) =y. Then (23) becomes « H (u, z)ofu=yz
and so

(24) Buo(yz)"'=(xH(u, 2))™*

for all u€S, and all z&S;. Hence, H is also homotopic to the group S(o)
and the proof of Theorem 3 is complete.

Further more, one can now use the general solution for (22) obtained
in the preceding section in conjunction with (20) and (21) to get the following
general solution to (19):

A(p, 9 =apoByq

D(x, y)=Ax358y

(25)
B(x,u)=a"'(Axopu)
Hu, 2)=38"1(puofz)

where a =R, (t), B=Lp(a) Ly(e), \=R,(t) Rg(e), =Ly (a), and =R, (t) Lp(a)
for any fixed ecS;, t&S; and a&S;.
Thus we have proved the following theorem.

Theorem 4. If the four GD-groupoids A, B, H and D satisfy the con-
ditions of Theorem 3, then the gemeral solution of equation (19) is given by (25)
where S (o) is a group and o, B, A, 8, ¢ are mappings from S,, S, S,, S, and S,
into S, S,, S, S and S, respectively. Conversely, if S(o) is a group and A, B, H
and D are defined as in (25) then equation (19) is satisfied.

The generalized equation of bisymmetry.

We now employ Theorem 1 to obtain the following known result (see [5]).

Theorem 5. Let (S, Sg, S; A,) and (S,, Sy, S; B,) be G-quasigroups and
let (S, S;, Sg A,), (S, Sp Se 43), (81, Sy, S By) and (S5, Sy, Sg; By) be GD-
-groupoids. If the bisymmetry equation

(26) Al (Az (x’ u), A3 (y’ V)) = Bl (Bz (x’ ¥)s B3 (u’ V))

holds for all xcS,, ucsS,, y&S,, v&eS, and if the mappings Lg,(u):S,—> S,
and Ry, (v):S,—Ss are bijections for each uC S, and each v&S,, then there is
an abelian group S (o) which is homotopic to each of A, and B, for i=1, 2, 3.

Remark 2. In Theorem 5, it is assumed that L;(u) and R, (v) are
bijections (which are not used in [5]) which are necessary in order to reduce
equation (26) to the generalized transitivity equation (1).

Proof. From the hypothesis, for each u<S; and each we S, there
exists a unique v& S, such '

@n | By, v)=w,

12*
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and so there exists a mapping K: S, x S,— S, such that
(28) K(w, u)=v.
By (27) and (28), (26) reduces to
A, (4, (x, w), A5 (3, K (w, u))= B, (B, (x, ), w).

In this equation setting w=e< S,, we get

(29) A, (A, (x, u), A5 (y, L (e) w)) = Rg, (€) B, (x, y)
and this could be rewritten as:
(30) Al (Az (x9 u)’ Asl (ya u)) = le (x’ y)

for all x&S,, u€ S, and y<S,, which is merely the generalized transitivity
equation (1) where

4 (i, )= 4, (y, Ly (e)u)
(31) and

B,’ (x, )= Rg,(e) B, (x, p).

It is easy to see that (S,, Sj, Sg 4,') and (S, S,, S; B,y are GD-groupoids.
Fixing in (26), one after the other, x=a, u=c¢, y=5; x=a, y=>b, v=d, u=c,
y=b, v=d; x=a, u=¢, v=d and for brevity denoting the left and right trans-
lations of the G-quasigroup A, (or B,) by simply L, (or Lp,) and Ry, (or Rg))
respectively, we get

(32) { L4, L4y(b)=Lgp, Lp,(c), Ra,L4,(a)=Lg, Rp,(d),
RAI RAz (C) = RB] RBz (b)’ LAI RAs (d) = RBx LBz (a)
Since A4, and B, are G-quasigroups, by hypothesis, from (32) we get
(33) Lg,(@)=R5, Ly, Ry (d) is a bijection for all acs,.

Further, (30) when x=a and u=c yields

(34) Ly, Ra,(0)= Ly, (a).
When x=a, (31) gives ‘

(33) ~ Lp,(@) =Rz, Ls,(a).

This, with (33) implies Lg,(x) is a bijection for all x& S, . Moreover, from (31),
when u=c&S,;, we get

(36) Ryri(c)= Ry, (L (o) (c)).

Since Ry4,(v):S,->S, is a bijection for all v<S,, from (36) Ry, (u) is a bijection
for all ucS;. :

Thus, by applying Theorem 1 to the equation (30), each of A, A, A’
and B’, are homotopic to a group S(o) and, in view of the information given
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in connection with Theorem 1 as well as (31), (32), (34) and (36), we obtain
the following expressions.

37 A4,(p, 9 =Ry poLyg, for p=S,, g&S;
(38) B, (%, y)= R4, R4, (¢) xoLp:,(a) y

=R4 Ry, (¢) XoLy Ry (c)y, for xc8,, yES,
(39) A, (x, u) =Ry (R4, Ru, () xo R4, Ly, (@) )

=R (Rs, Ry, (@) xo Ly, R, (d)u),forx< S,,ucS,.
(40) A'5(y, w)= Ry, (¢) Ly, (@)™ (R, La, (@) u)"'o L, (@) y), for uc S5, ¥E S,
Now (38) in conjunction with (34), (35) and (32) gives,
(41) B,(%,¥) = Ry, (R, Ra, (¢) Xo L4, R4, (d) y), for xC5S,, yES,,

showing thereby that B, is homotopic to S (o).
Put x=a and y=5 in (26). Then by (37) we have

(42) B (u, v)= LEII (Ray Ly, (@ uoLy, Ly, (b) v), for ucS,, veSs,.

Thus B, is also homotopic to S(o).
When u=c and y=»5 equation (26) with (32) yields
A; (R (0) X, Ly (b)v) = A, (R, Rs, Re, () X, L' Ly, Ly, (c)V) . |
By setting Rp,(b) x=s, Lp,(c)v=t, we get
(43) B (s,t)=A4,(Ry' Rp,s, L3 Ly 1)
= RBI SOLE1 t.

Hence B, is also homotopic to S (o).
Substituting (37), (39), (40), (41), (42) and (43) into (26) we get

(44)  (Rp,Rp,(b)xoLp, Ry,(d) w)o((Ry, L4, (@) t)~1o Ly, (a) y) =
= (R, Ra, (€) X0 L, Ry, (@) y)o (R, Lay (@) oL, L, (b)),
With Rp, Rs,(8) x—E&, Ls, Ra, (d) u=7, (Ra, Ly, (@) u)~" =6,
L4 Lyy(b)v=0', Lp,(a)y=3, (44) becomes
(Eom)o(B808) = (Eo)o(nah).
Taking § =v =3 =identity, we get first 6=0" which leads to
nod=23o.
Hence (o) is commutative. Therefore S(o) is an abelian group.

(RayLa(@u)y™ =Ly Ly, (b)v.
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Substituting into (40), using (32) we get
(45) Ay (p, V)= Ry (€) Ly, (@)™ (L La,(b) voLwr,(@) y)
= Rur,(€) L, (@) (Lsr,(@) yo L g, Ly (B) V)

,, =L3' (Rs,Ls,(@ yoLs,Ls,(c)v) for yES,, vES,,
so that A4, is also homotopic to S'(c). This completes the proof of the Theorem.
With RA; =f, LA1 =g, RB; =h, LBl =k, RB,RBZ(b) == RAlRAZ(C) =Q,
Lp, Rp,(d)= Ry, La,(a@) =1, L4, Ry (d)=Rp Lg,(a)=0,

Ls, Lo (¢) = La, La,b) =B, from (37), (39), (41), (42), (43) and (45) we get

A, (x, y)=fxogy.

A, (x, »)=f"Hoxod y).
Bz(x’ ,V) =h71 (‘P x°°‘~y)-

(46) By(x, )=k 1 (YxoBy).

B, (x, y)=hxoky.

Ay (x, ) =g (axoBy).

Thus the following Theorem is proved.

Theorem 6. Let the GD-groupoids A, B;(i=1, 2, 3) defined as in
Theorem 5 satisfy equation (26). Then, under the same hypotheses as in Theorem 5,
the general solution of (26) is given by (46), where S(3) is an abelian group.
Conversely, if S(o) is an abelian group and A, B/(i=1, 2, 3) are defined as
in (46) with eight maps f, g h, k, @, 4, «, and (8 given, then A, B, (i=1,2,3)
satisfy the generalized bisymmetry equation (206).

Now as an application of theorem 1, we consider the following functional
equation

(47) ABEE 7Y, Clx, XN =D G %),

where A4, B, C, D are quasigroups of different arities defined on the same non-
-empty set S of arities |A4,|=2, |B|=n—1, [C|=n—k+1, and |D|=k.

Denoting B\, xi")=B G5, )= B(x, z), where x=(xh,
z= (xZ-l)’ .
C(%,» %) = C (3, 2), Where y=x,,
DG x)=D(x, ),
(47) could be written as,
(48) AB(x, 2), €, 2)=D(x, y),
~ where 4 is a quasigroup, B, C and D are GD-groupoids given by,

B:Sk-ix Stk S, D:S-1x§—>S, C:SxS %8, A:SxS—~>S.
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Evidently R,, Lp and R¢ are bijections. That is, equation (48) satisfies the
conditions of theorems (1) and (2) and hence

A(p, )=apoPyq
BGE, dy=a-tyxi o pxi™

Cx %) =B 1 pxi "o 3x,)

1

(49) :

k1 k—1
D(xi™ ", x) =yxi o8x,

where «, B, v, 8 and ¢ are arbitrary permutation on S.
Thus, we have proved the following theorem.

Theorem 7. Let A, B, C and D be quasigroups of arities |A|=2,
|Bj=n—1, |C|=n—k+1 and |D|=k defined on the same set S, satisfying
equation (47). Then all solutions of (47) are given by (49) where «, B, v, 3 and ¢

are arbitrary permutations on S and (o) is an arbitrary group operatiori defined on S.
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