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0. The best known matrix functions [3, Chs. 6 and 11] have square mat-
rices of the same dimensions (generalizing some real functions) or scalars (e.g.
the coefficients of the characteristic polynomial) for their values. Other types
of matrix functions have been formulated only for some special purposes, €.g.
[1]. In this paper another class of matrix functions, appearing in some vector
optimal adaptive control and nonlinear filtering problems [6], is defined as a
particular mapping of square matrices into square matrices of smaller dimen-
sions in general. Some properties of these functions are shown and two suffi-
cient conditions for the definiteness of their image are formulated.

1. Real matrix M of the dimensions (m,, m,); m,,m,>>1 is an (m, x m,)
ordered array (mi,-)j- of the real elements my i=1,...,m,, j=1,...,m,. For
m,=1 it is called m-vector and, for emphasis, denoted m; for m;=m,=1 it
is taken isomorphic to the corresponding scalar m,,. For the square matrix
M (m,=m, * m) of order ord M=m its trace is a scalar function with the value

ordM
¢y trtM * 2 m,.
i=1
Definition. For each positive integer n a function T, is defined for any
square matrix M * (my); of order m that is a multiple of n, ie. m=n-r for
some positive integer r, and its value is a square matrix of order r

2 M= (kgl MG_y)yn+k, (j-—l)n+k)j"
In view of (1) _ .
29 \ T, M= (tr M,);.

where M,; i,j=1,...,r is a square submatrix of (partitioned) matrix M such
that its elements are 7 _y), 4, G_nns+s K 1=1,...,n E.g. ‘

1 1{20 10{207 [—-10{20
3 0/00 0 0/00 02,0 0 )
T | S =T, | e =7 | i =[ l
2 . 2 ) 2
2 050 2 050 20150 25
0 0{0 0 0 0/00 00{0 0
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Generally, the function T, is shrinking a square matrix into a smaller one
by replacing every submatrix of order » in a symmetric partitioning by its
scalar trace value,

2. The functions T, are, in a sense, generalizations of a trace since this
function is used in forming their value, cf. (2'), and, furthermore, T, 4, M=trM.
At the other extreme value of the index set {n|ord M/n is a positive integer}C
{l,...,ord M} T,M=M.

For n>1 functions T, are many-to-one mappings since then there are
infinitely many matrices M,; of order n with the same trace, cf. the example in 1.

These functions have the following properties:
3 I,M' =(T, M),
C)] T,(N+cM)=T,N+cT,M

if the left-hand side exists for scalar ¢#0, both by elementary properties of
the trace; and

&) TpwM=T,(T,y M)
if the left-hand side exists for positive integers # and #’, by (2)

n-n’

since >, 2 (k—1)n+l= > k.
=1 k=1 k=1

3. From (3) it is implied that 7, M is symmetric for symmetric
matrices M,V therefore the following theorem is well-posed. '

Theorem A. If M is a non-negative (positive) definite matrix of order m,
then T,M of order r*mjn for each n such that m(modn)=0, is also a non-
-negative (positive) definite matrix.V

Proof? For n=1 the theorem is trivial. For n>1 the proof is based
on observation that the sum of n conveniently chosen square submatrices around
the main diagonal (principal minors) of order m—n-+1 of matrix M has among
its elements all the elements of matrix T,M. Since M is a non-negative (posi-
tive) definite matrix if and only if the determinants of all? its principal minors,
M(py, ... p) > (M) 1<p,<---<p.<m, k=1,...,m, are non-negative
(positive) [4, p.307], then the principal minors of M are of the same definiteness
as M. In particular, matrices M (k,k+1,...,k4+m—n); k=1,...,n(>1) of
order m—~n+1=(r—1)n+1 are non-negative (positive) definite together with

. n

M, and so is their sum, T > Mk, k+1,...,k+m—n). Hence, the follo-
. 0 . . k=l .
wing principal minor of order r of the matrix 7, T(1,1+n,...,1+@F—Dn)=
n
= (121 My +(+G—1my k—1 +(+G—1)m)i» Which is equal to T, M by (2), is also a
non-negative (positive) definite matrix. Q.E.D.
1) Clearly, for n>1 the converse does not hold for every matrix M, cf. the example in 1.

2 In view of (5) it would suffice to prove it only for prime numbers n.
3) For positive definiteness only p,=/; I=1,..., k is sufficient [3, p.74].



On definiteness of certain matrix functions of a matrix 167

Since by (4) T,(—M)= — T, M, Theorem A holds if the words “negative*
and “positive* are mterchanged ‘

4. If M and N are two non-negative definite matrices of the same order
m, then T, NM is not necessarily a non-negative definite matrix in general e.g.

for n=1, except for n=m (=ord NM): T, NM=trNM= Z ny-my; =0

i,j=1
P 0

[3, p.102]. But if N is of special quasi-scalar form I,QP= " 1,9 where P
0 P

is a non-negative definite matrix of order n and the positive integer r=m/n,

the above statement is true for all n, i.e.

Theorem B. If P and M are both non-negative (non-positive) definite
matrices of orders n and m, respectively, where m(modn)=0, then T,(I,QP)M
is a non-negative definite matrix when I, is the identity matrix of order r * m/n
and @ denotes the (right direct) Kronecker product of matrices.

Proof. If P is a non-negative definite matrix, a square matrix Q of the
same order exists such that P=Q' Q [3, p.54]. Hence, if M is a non-negative
definite matrix,

T, (I, P) M= (tr PM,); = (tr Q' M, 0); = T, [, QY M (1,9 Q)

is also a non-negative definite matrix by Theorem A, since the matrix A" M4
is then non-negative definite for any matrix A4 [4, p.305] and trAB=tr B4
whenever both sides coexist [3, p.95].

Since 7, ®’( P)(—~M)=(, P)M, the theorem holds also for the non-
-positive defmlte matrices P and M. Q.E.D.

.5. The functions T, were initiated by the following identity [6, p.152] for
r-vector u

(6) tr@ QIYM@uxl,) P=u' (T,([,QP) M)u,

This quadratic form appears in the Hamiltonian for derivation of r-vector
u optimal control of the stochastic linear dynamics with n-vector state x and

the random gain‘ matrix B+ (bij)j of the dimensions (n,r):
x(t+D=Ax@)+Bu@®)+e(®)=Ax)+ @ ORL)z+e(t),

where z'* (by(, ..., 0,015, ...,b,), i.e. 2 is n.r-vector — a column by column
of elements of the random matrix B — so that its second-order central moment
is representable by the covariance matrix C(z) of order n-r*m([5]. If the
covariance matrix of x(¢) is denoted by C(x,?) — the matrix of order n, then
the Hamiltonian for the adaptive optimal vector controls (generalizing [7]) con-
tains [6, p.80] the quadratic form (6) for non-negative definite matrices M=:C(z)
and P=P(C(x,t+1)), costate of  C(x,t+ 1).9 Hence, the sufficient condition
for optimum control #==u(¢) could be satisfied by Theorem B, e.g. in the

4 (Right direct) Kronecker product is defined by A®B_t(a,~jB)j. 3, p.227].

% C(z) is alaways non-negative definite as a covariance matrix, and this holds also for
P(C(x,r+ 1)) if the final boundary condition on P (C (x,. )) is non-negative definite and that
is fulfilled for any reasonable cost functional.
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usual case when the time-additive cost functional for the problem contains posi-
tive definite quadratic form in controls, u’ (7) V{E)u()9

A similar form and the condition [6, pp.173—175] appears in deriving the
(near) optimal (in a sense of minimal covariance unbiased, i.e. zero-mean error)

filter (generalizing [2]) for nonlinear state dynamics controlled systems [6,
Appendix E].

6. The author is indebted to Professor Franz E. Hohn of the University
of Illinois for the initial encouragement to write a paper and to Professor

Slavisa B. Presi¢ of the University of Beograd for helpful suggestions on an
earlier draft,

9 The second derivative of the Hamiltonian with respect to u(f) is then a positive
definite matrix V() + T, ([, P(C (x,t+1))) C (2).
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