C-COMPLETE SYSTEMS IN NORMED SPACES

Pavle M. Miličić

(Communicated August 30, 1975)

1. Introduction

It is a known fact that an orthonormal sequence (e_i) in a Hilbert space is complete if and only if it is linearly dense in it. In that case it is also Schauder's basis in it. In incomplete inner-product spaces the situation is more complex. That is, a complete orthonormal sequence in an incomplete inner-product space is not necessarily linearly dense nor a basis. M. Golomb has introduced in [1] a concept of C-complete sequence as an equivalent for the concept of linearly dense sequence in the incomplete inner-product space.

That paper ([1]) inspired us to write this article, in which we obtain similar results in incomplete normed spaces. We also found certain necessary and sufficient conditions for an orthonormal sequence to be a Schauder's basis in, so called, semi-inner product space and some generalizations of Parseval's equality and Minkowski's inequality.

2. Orthonormal systems in semi-inner product spaces

Let X be a normed space over the field Φ . (Φ is the field of complexe numbers C or the field of real numbers R). Let p>1 be a fixed real number. Let [.,.] stand for a generalized semi-inner product over X^2 (s. i. p. g.) whose index is p and which satisfies conditions:

$$(\forall x \in X) ([x, x] = ||x||^p),$$

$$(\forall x, y \in X) (\forall \lambda \in \Phi) ([x, \lambda y] = |\lambda|^{p-2} \overline{\lambda} [x, y]).$$

Such s. i. p. g. always exists ([3]). If p=2 then [.,.] is semi-inner product (s. i. p.) which is a generalization of inner product (.,.). The space X with an s. i. p. g. [.,.] we denote as s. i. p. s. g. Besides, in this paper, X^* is the dual space of X, X is the unit sphere of X and X is the set of natural numbers.

The following definitions are essential for this paper.

Definition 1. A vector system $(e_i)_{i \in I}$ is orthonormal in s. i. p. s. g. X if and only if

$$(\forall i, j \in I) ([e_i, e_i] = \delta_{ii}),$$

where δ_{ii} is Kronecker's delta.

It can be easily seen that each s. i. p. s. g. possesses at least one orthonormal system and that vectors of an orthonormal system are linearly independent.

Definition 2. Let $E = (e_i)_{i \in I}$ be an orthonormal system in s. i. p. s. g. X. $\hat{x}_i = [x, e_i]$ are left Fourier's coefficients and $\check{x}_i = [e_i, x]$ are right Fourier's coefficients of the vector x relative to the system E.

Definition 3. A system $(e_i)_{i \in I}$ is complete in s. i. p. s. g. X if

$$((\forall i \in I) (\hat{x}_i = 0)) \Rightarrow x = 0.$$

Definition 4. Orthonormal sequence (e_i) is C-regular in s. i. p. s. g. X if for all $x \in S$, the sequence $\sum_{i=1}^{n} \hat{x}_i e_i$ is a Cauchy sequence in X.

In [4], the existence of orthonormal systems which fulfil the conditions of definitions 3. and 4., their cardinality, and necessary and sufficient conditions, for such a system to be a Schauder's basis in a Banach space, are discussed. It was shown that in l^p space with s. i. p. g.

(1)
$$(\forall x = (x_i), y = (y_i) \in l^p) ([x, y] = \sum_{i=1}^{\infty} x_i |y_i|^{p-1} \operatorname{sgn} y_i),$$

the vector sequence

(2)
$$e_n = (\underbrace{0, 0, \ldots, 0}_{n-1}, 1, 0, \ldots) \quad (n = 1, 2, \ldots)$$

satisfies condition of definitions 1., 3. and 4. If K is the set of all vectors in l^p which have finitely many coordinates different from zero, then K is incomplete s. i. p. s. g. relative to s. i. p. g. (1) and the sequence (2) satisfies conditions of definitions 1., 3. and 4. in K.

Also, in $L_{(0,1)}^p$ the Haar's sequence of functions

$$\varphi_0 = 1.$$

$$\varphi_{01},$$

$$\varphi_{11}, \varphi_{12},$$

$$\dots$$

$$\varphi_{n1}, \varphi_{n2}, \dots, \varphi_{n2^n},$$

$$\dots$$

where
$$\varphi_{ni} = \begin{cases} 2^{\frac{n}{p}}, & \frac{i-1}{2^n} < t < \frac{2i-1}{2^{n+1}} \\ -2^{\frac{n}{p}}, & \frac{2i-1}{2^{n+1}} < t < \frac{i}{2^n} \\ 0, & t \notin \left[\frac{i-1}{2^n}, & \frac{i}{2^n} \right] \end{cases}$$

is orthonormal sequence with properties of definitions 3. and 4. who are relative to s. i. p. g.

$$(\forall x, y \in L^p_{(0,1)})$$
 $([x, y] = \int_0^1 x |y|^{p-1} \operatorname{sgu} y \, dt).$

3. C-Complete orthonormal systems

Definition 5. A sequence (x_i) in s. i. p. s. g. X is C-complete if each Cauchy sequence (y_n) in X for which

$$(\forall i \in N) \left(\lim_{n \to \infty} [y_n, x_i] = 0 \right)$$

is a null sequence, i. e., $\lim_{n\to\infty} ||y_n|| = 0$

The sequence (2) is C-complete in K.

Theorem 1. A sequence (x_i) in a complete s. i. p. s. g. X is C-complete if and only if it is complete in X.

Proof. C-completeness implies completeness also in incomplete space. Indeed, if (x_i) is C-complete and if $x \in X$ such that $(\forall i \in N)$ ($[x, x_i] = 0$) then, the sequence $y_n = x$ is a Cauchy sequence for which

$$(\forall i \in \mathbb{N}) (\lim_{n \to \infty} [y_n, x_i] = [x, x_i] = 0).$$

Therefrom, $\lim_{n\to\infty} ||y_n|| = ||x|| = 0$.

Conversely, let (x_i) be complete and (y_n) a Cauchy sequence for which $(\forall i \in \mathbb{N}) (\lim_{n \to \infty} [y_n, x_i] = 0)$.

Since X is complete, there is a $y \in X$ such that $y = \lim_{n \to \infty} y_n$. Since [.,.] is linear and bounded functional in first argument, it follows that

$$(\forall i \in \mathbb{N}) (\lim_{n \to \infty} [y_n, x_i] = [y, x_i] = 0).$$

Because of completeness of the sequence (x_i) , y = 0, i. e.,

$$\lim_{n\to\infty} ||y_n|| = ||y|| = 0.$$

Theorem 2. 1) If an orthonormal sequence (e_i) is C-regular and C-complete in X, then it is linearly dense in X.

2) If an orthonormal sequence (e_i) is linearly dense in X, and if the sequence $f_i = [., e_i]$ is linearly dense in X^* , then the sequence (e_i) is C-complete in X.

Proof. 1) If a sequence (e_i) is C-regular then the sequence $x_n = x - \sum_{i=1}^{n} \hat{x}_i e_i$ is a Cauchy sequence, as

$$||x_n-x_m||=||\sum_{n+1}^m \hat{x}_i e_i||=||x|| ||\sum_{n+1}^m \hat{y}_i e_i||,$$

where x = ||x||y and y = S. Moreover,

$$[x_n, e_i] = \begin{cases} 0, & i \leq n \\ [x, e_i], & i > n \end{cases}$$

and, therefore,

$$(\forall i \in N) (\lim_{n \to \infty} [x_n, e_i] = 0).$$

Since (e_i) is C-complete we have $\lim_{n\to\infty} ||x_n|| = 0$. Therefore

(3)
$$(\forall \varepsilon > 0) (\exists n_0 \in N) (\forall n \geqslant n_0) (||x - \sum_{i=1}^{n} \hat{x}_i e_i|| < \varepsilon),$$

which proves that the sequence (e_i) is linearly dense in X.

2) Let (y_n) be a Cauchy sequence in X such that

(4)
$$(\forall i \in N) (\lim_{n \to \infty} [y_n, e_i] = 0).$$

 (y_n) is bounded. Since (f_i) is linearly dense in X^* , according to theorem 2 p. 184 [2] and (4), we have

$$(\forall x \in X) (\lim_{n \to \infty} [y_n, x] = [0, x] = 0).$$

Let ε be arbitrary small positive number and $n_0 \in N$ such that, for $m > n \ge n_0$, $||y_m - y_n|| < \varepsilon M^{1-p}$ where $M = \sup_n ||y_n||$. For all $x \in X$, such that $||x|| \le M$, we have

$$|[y_m, x] - [y_n, x]| = |[y_m - y_n, x]| \le ||y_m - y_n|| ||x||^{p-1} \le \varepsilon M^{1-p} M^{p-1} = \varepsilon.$$

Consequently, the sequence $[y_n, x]$ uniformly converges to 0 for $||x|| \le M$. Now, let $n' \in N$ be such that $|[y_{n'}, x]| < \varepsilon$. If we set $x = y_{n'}$ then $[y_{n'}, y_{n'}] < \varepsilon$ or $||y_{n'}||^p < \varepsilon$. This inequality shows that $\lim_{n \to \infty} ||y_n|| = 0$, and the proof is completed.

Remark 1. If an orthonormal sequence (e_i) is linearly dense in an inner product space (X, (.,.)), then the sequence $f_i = (., e_i)$ is linearly dense in X^* . (Remark 1. and Remark 2., p. 178 [2]).

Remark 2. Theorem 2. is a generalization of the main result (Theorem) in [1]. Indeed, each orthonormal sequence (e_i) in an inner product space $(X, (\cdot, \cdot))$ is C-regular in $(X, (\cdot, \cdot))$ and C-completeness of the sequence (x_i) is clearly equivalent to C-completeness of the sequence obtained from (x_i) by orthonormalization.

Remark 3. The proof of theorem 2 is different from the proof of Theorem [1].

Theorem 3. Let the sequence (e_i) be orthonormal in s. i. p. s. g. X and the sequence $f_i = [., e_i]$ be linearly dense in X^* . Then the sequence (e_i) is a Schauder's basis if and only if the sequence (e_i) is C-complete and C-regular in X.

Proof. If (e_i) is C-complete and C-regular then (3) holds, i. e.

$$(\forall x \in X) (x = \lim_{n \to \infty} \sum_{i=1}^{n} \hat{x}_{i} e_{i} = \sum_{i=1}^{\infty} \hat{x}_{i} e_{i}),$$

which proves that (e_i) is a Schauder's basis in X. Conversely, if (e_i) is a Schauder's basis then there exists a unique sequence $(\varphi_i) \subset X^*$ such that

$$(\forall x \in X) (x = \sum_{i=1}^{\infty} \varphi_i(x) e_i).$$

In that case $(\forall k \in N)$ $(\varphi_k(x) = \hat{x}_k)$ therefore $x = \sum_{i=1}^{\infty} \hat{x}_k e_i$. That means that the sequence $\sum_{i=1}^{n} \hat{x}_i e_i$ converges in X, which shows that the sequence (e_i) is C-regular and linearly dense in X. By part 2) of Theorem 2, it is C-complete.

Corollary. If one of the following two conditions is satisfied:

- 1. (e_i) is orthonormal, C-regular and C-complete in X;
- 2. (e_i) is orthonormal, C-regular and linearly dense in X and $f_i = [., e_i]$ is linearly dense in X^* , then

(5)
$$(\forall x \in X) (x = \sum_{i=1}^{\infty} \hat{x}_i e_i),$$

(6)
$$(\forall x, y \in X) ([x, y] = \sum_{i=1}^{\infty} \hat{x}_i \, \check{y}_i),$$

(7)
$$(\forall x, y \in X) ((\sum_{i=1}^{\infty} [x+y, e_i] [e_i, x+y])^{1/p} \leq (\sum_{i=1}^{\infty} \hat{x}_i \check{x}_i)^{1/p} + (\sum_{i=1}^{\infty} \hat{y}_i \check{y}_i)^{1/p}).$$

The equality (6) is a result of representation (5) and property of linearity and continuity of s. i. p. g. [.,.] in the first argument. Otherwise, if [.,.] is an inner product, it becomes Parseval's equality. The inequality (7) follows from (6), the representation $||x|| = [x, x]^{1/p}$ and two inequality $||x+y|| \le ||x|| + ||y||$. If $X = l^p$ with s. i. p. g. (1), then Minkowski's inequality is obtained

$$(\sum_{1}^{\infty} |x_{i} + y_{i}|^{p})^{1/p} \leq (\sum_{1}^{\infty} |x_{i}|^{p})^{1/p} + (\sum_{1}^{\infty} |y_{i}|^{p})^{1/p}.$$

REFERENCES

- [1] M. Golomb, Complete orthonormal systems in pre-Hilbert spaces, Amer. Math. Monthly, 79 (1972), 263—267.
- [2] А. Н. Колмогоров, С. В. Фомин, Елементи теории функций и функционального анализа, Москва 1972.
- [3] P. M. Miličić, Sur le semi-produit scalaire généralisé, Mat. vesnik 10 (25). Sv. 4 (1973) 325-329.
- [4] P. M. Miličić, Les systèmes orthonormés dans des espaces normés, Mat. vesnik, 1 (14) (29), 1977.

Prirodno-matematički fakultet, Studentski trg 16 Beograd, Yugoslavia