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1. Let R be a binary relation symbol in a countable language L and %
a countable model for L. Let us define R3[= {x& A{A|—=R(x, a)} for every

element ac 4. We shall write R, instead of RZI if there is no ambiguity. A
model B is an elementary R-end extension of 9 if and only if A<B (ie. if

U is anelementary submodel of B), A+ B and for every a& A R?r— R?, in
which case we shall write A< ,.B. Our aim is to give some sufficient con-
ditions for R in order to U has an elementary R-end extension. In fact, the
work in this paper is related to the proof of the theorem 2.2.18 [2], which
says that every countable model of ZF has an elementary end extension. It
will appear that a model with a relation R has an elementary end extension
under weaker assumption for R, instead of R is & in ZF.

In the following we need the omitting types theorem:

Theorem 1 (A. Ehrenfeucht) Let T be a consistent theory in a coun-
table L, and for each nEow let %,(x,,...,xk,) be a set of formulas in k, vari-
ables. If T locally omits each X, then T has a countable model which omits
each Z,.

We say that T localy omits Z(x,,...,x,) if for every formula ¢(x,,...,x,)
which is consistent with T, there exits s X such that ¢ A 1o is consistent with
T. The proof and applications of the above theorem can be found for exam-
ple in [2].

2. Definition. A relation R is regular in ¥ if and only if the follo-
wing holds in .

C.1. For every a— A R,#A.
C.2. For all a,bc A there is ¢ A4 such that a,b&R,.

For a formula ¢(x,y) in two free variables and x& A4, let cpzlz {yEAl
A= (x, »)}.
C.3. Let acA. If for every x& R, there is b= A such that cp)?[gRb, then there

is b4 such that U ¢UCR,.

xR X
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The above conditions are the first order properties of R, since R is regu-
lar in % if and only if the following sentences hold in .

C'.1. Vx3yT1R(y,x).
C'.2. VxVy3z(R(x,z2)AR(y,z)).
C'.3. Vy(Vx3yRx,v=>Vule(x,u)> R, y)=>3yVxVu(R(x,v)>

(¢ (x, 1) >R (u, y))).

Hence, if A=B (i.e. if A is elementary equivalent to B), and R satisfies
C.1., C.2,, C3., in ¥, then it does in B. In the next we assume that R is
is regular in 2.

Lemma 1. 1° U R,=A.

acA
2° For every a,...,a,=A, n&w, there is b= B such that R, \U - - -
y 1 n 1

\JRa, CR,, and hence Ra, \J- -+ URa, #A.
Proof. 1° Immediately by C.2.

2° 1t is sufficient to prove that for any a,b<A, there is ¢&A4 such
that R,UR,CR,, since the general case we can obtain easily by induction. Let
a,b< A. By C.2. there is d= A such that a,b<R,. Let ¢(x,y) be R(y,x). Since
for every x<R,, <p31=Rx, by C.3. there is ¢=4 such that U cp?flch. Since

xERq
a,b&R,;, we have R,UR,C R, —

In order to A has proper elementary R-end extension the theory T=
=Th, a),c,U{1 R (c,a)la=A}, where ¢ is a new constant symbol, should be
consistent. As it is easily seen, T is consistent by lemma 1. and compactness
theorem.

Lemma 2. Let {(x) be a formula in one free variable in the language
L,=LU{alacA} and ¢ a new constant. Then {(c) is inconsistent with T if
and only if for some acA{xCA|UA =Y (x)}CR,, ie. A|=Vx({(x)=>R(x,a))

Proof. (=) Assume {(c) is inconsistent with 7. Then T |=7 ¢ (c), hence
for some a,...,a,&A4 Th(N,a),c, | =1 R(c,a)A---AN1R(c,a,) =T ¢ (0).
Therefore A == Vy (W (=R, a)V ---VR(a)). By Lemma 1 there is
b&Asuch that Ra\J)- - - Rae, CR,. Then {ycA4|A =¢ ()} CR,.

(<) Assume ¢ (c) is consistent with 7 and for some aSAUA|[=Vx

({4 (x) >R(x,a)). Let B be a model of TU{{(c)}, and let c%=c0. Then
B =4 (c,). Since A<B (i.e. A is an elementary submodel of B; we identify

a8 with a for every acA), it follows that B =V y({(y)=>R(y, a)). Hence
B | =R (c,, a) that contradicts to B |- 7 R (¢, a). -

Remark. We see that A< B if and only if there are no ac A4 and
bC B such that bCRD and b4’ for all a'CRY. Hence A<, B if and only
if B omits X, ={R(x,a)} U {x£a"|a’' =R} for every aCA.

Lemma 3. For every a=A T localy omits 2,

Proof. Let 3xo(x,c) be consistent with 7. Assume there is no cE€ 2,
so that 3 x(p(x,c) A 16) is consistent with 7. Hence
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1° 3x(p(x, ) A TR (x, @) is inconsistent with 7, so by lemma 2, for
some b,cA{ycA|UAI—Tx (@ (x, Y) A TR(x, @)} CR;,.

2° Letd' &R, Then Ix(p(x,c) Ax=a’) is inconsistent with T i.e. ¢ (a’,c)
is incosistent with 7, so by lemma 2, there is b<A such that {ycd4|UA|=
@ (a’, »)} CR,. Therefore we have proved that for every a’'< R, there is b& A such

that @?QR,,, hence by regularity of R, there is b,=A such that | j {yc
a’'ERg
AN |=o (@, )} R,
Let b= 4 such that R, \JRy,,CR,. Then:
EAAZ3Ix @ NATRE, O}V EA| A= Ix (e (x, ) AR (x,2)} CR,

ie. {yc4|A=3Ixe(x,»)}CR,, so by lemma 2. Ix¢(x,c) is inconsistent
with T, contradiction. —

Theorem 2. Let U be a countable model and R a regular relation
in . Then N has an elementary R-end extension.

Proof. Immediately by remark above lemma 3, lemma 3 and theorem 1. —|

Corollary. If R is regular in U, then there is B such that U< N and
| B|=ow,.

Proof. In view of the theorem 2, we can construct an elementary

chain A=A <A <+ - - <Wy <+ -+, a<or, sothat U<, Wy, 1, | Ao =@, 4 C Ay,
#
If A<w, is a limit ordinal, then A=A, and it is easy to check that for
a<<A
a<A, Uy<.gUy Then the required B= UA,. —
a< ey

3. We are going to give some examples which illustrate the theorem 2.

1° Let < be the natural strict ordering in Peano arithmetic. Obviously
< satisfies C.1, C.2. Condition 3 can be restated as Vv (v), where ¢ (¥) is

Vx<vIyVu(p(x,u)>u<y)>IyVx<vVu(e (x, )=>u<y).

It is an easy exercise to prove by induction that Vv{(¥) is a theorem in
Peano arithmetic. Therefore < is regular relation. Hence every countable model
of Peano arithmetic allows elementary <<-end extension. This statement is, of-
course, a part of MacDowel and Specker’s theorem, which says that every model
of Peano arithmetic has an elementary < -end extension of the same cardina-
lity ([1], p. 244, see also exercise 2.2.10 in [2]).

2" The relation of division x|y&3z y=zx in natural numbers is regu-
lar (we take 1 as an initial element).

3° Let k be an inaccessible cardinal, X a set, | X|=k, and S, (X)={y|yCJX,
| y|<k}.Then C is regular in S, (X). The regularity of Cfollows from the following
fact: Let a& S, (X) and @ ={4,C S, (X) | yCa}a family of sets. If for every yCa A,
has an upper bound in S, (X), then A, has an upper bound in S, (X).

yCa

4° Relation < in ZF, ZF— P (ZF without power set axiom), ZF—
(ZF without the axiom of infinity) is regular, as it can be easily seen. We
see that C.3. is in fact the collection axiom. Therefore in each of these cases

we can apply theorem 2 (see theorem 2.2.18 [2], also [3] for other similar
construction),
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5° Let k be a regular cardinal. Then the ordering <. of & is regular, since
for a <k, if for every £<<a S;Ck, has an upper bound in k, then U Sg has

an upper bound in k itself. At this point we can derive Keisler’s twg<;ardinal
theorem (theorem 3.2.14, [2], p. 135) which says: Let %= (4, V,...) be a model
in a countable L such that w<|F{<|A4|. Then there are two models B=
=(B,W,...) and €=(C,W,...) such that B<Y, |B|=w, B<E and |Cl=a,
Proof of Keisler’s theorem: By downward Lowenheim-Skolem-Tarski theorem
we may assume that {4 |=|} |+, Let us consider the expansion (3, <), where
< is the ordering of the cardinal | 4| and let (B,<%)< (%, <), where | B|=
=w. We have remarked already that <% is still regular. Since VC A, |V |<
<|A| and |A4| is a regular cardinal there is @< A4 such that VC{xEA|x<a}.
Hence there is b B such that W {xCB| x <Bb} W=¥%). Since <B is a
regular relation, it follows by corollary that there is model (€, <®) which is
an elementary <-end extension of (B <) such that |C|=w,. Since WC {x< B|x<Bp},
it follows that ¥€C {xc B|x<®b}, and hence V€ —w.

6° Let k be a regular cardinal and L, k—th constructible set in the
constructible hierarchy. Since L, |= ZFL - P, it follows that < is regular in
Ly. Similarly, if H,={x| transitive closure of x <k}, then (H,, <)~ ZF-P
so & is regular in H,.

One interesting question related to the last example may be asked: If
(M, ©) is a countable transitive model of ZF, or ZF — P, does there exist a
transitive elementary end extension (N, <) of (M, &)? In the view of Mostow-
ski’s collapsing lemma it is sufficient (M, <) to have a well founded elementary
end extension.
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