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SOME REMARKS ON BOOLEAN TERMS — MODEL THEORETIC
APPROACH

Z. Mijajlovi¢
(Communicated March 2, 1976)

In this article we discuss mainly some properties of Boolean terms from
model theoretic point of view. In this way, among others, we prove representa-
tion theorem for Boolean terms and also Boole-Schroder consistency condition
for Boolean equations. In part 3. we prove that a Boolean map is 1—1 if and
only if it is onto. It is also shown that this consideration can be extended on
some other structures. In part 4. it is shown that the countable free Boolean
algebra with induced ordering is an universal model for partial orderings. The
main tool that we use are theorems T. 1. 1—4.

1. Once S. Presi¢ applied Horn formulas in order to describe solutions
of Boolean equations. Motivated by the above idea we demonstrate that
kind of model theoretic approach in exhibiting some properties of map-
pings determinated by Boolean terms, or in some cases by terms of an
arbitary language L. In spite of the fact that the most of cited statements
are already known, there could be some interest in the presented method
of their proofs.

Before we proceed further, we list some theorems that we shall
use later.

Theorem (Horn). Horn sentences are preserved under direct products. —

Theorem (Vaught). If 0 is a Horn sentence of the language of Boolean
algebras and 2|—90, then 6 holds on all Boolean algebras. —|
2 is here two-element Boolean algebra.

Theorem. If B is a Boolean algebra and B'CB finitelly generated sub-

algebra, then B' is finite. —|

Hence, B is a direct limit of finite Boolean algebras.

Theorem. Assume that ® =, h;: i<jEI) is a direct system so that

each hy is a monomorphis and U, =lim ®. If 0 is a I, (i. e. universal-
—

-existential) sentence that ho'ds on all models U, (or, if there is a coffinal

subset I'CI so that § holds on all ¥; for i=1') then Ao |—6. .

We shall use the following symbols.
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Boolean multiplication is denoted by ., addition by + and comple-
ment of x by x'. Infimum of the set XC B is denoted by [ [x and sup-

xeX
remum by 2 x.
xeX
]_3y X, ¥ etc., we _denote finite sequences X, ..., X, Y, ..., ¥, if
there is no ambiguity in use of m, n. a<=2" stands for a=(%, ..., &),
«,&€2. In this case, by definition x*=x{'-.... x", where x°=x', x!=x.
Also for «, B€2" B*=f{"-.... By

Meta-equality is denoted by = .
2. Assume that B is a Boolean algebra and ¢(x) a Boolean term over B,
that is ¢ is a term of the language {+,-,'}U{a:aC B}. It will be shown

that some properties of the term ¢ are in fact transferred from Boolean
algebra 2. For example, in this 'way is obtained Rudeanu’s representation
theorem for Boolean terms.

Let t(x, #) be a Boolean term and

GV EVI( A 1(0,5)=0 = 1(F,5)=0).
ac2n

It is easy to check that the following holds:
2/ —o,

The sentence ¢, is a Horn formula. Therefore, according to T. 1. 2. it
holds on every Boolean algebra.

Hence, we have the following assertion:

Proposition. Let t(x, d) be a Boolean term over a Boolean algebra B,
A& B. Then the following holds:

If for all «a=2" B|=t(«, a)=0 then Bf:‘v’it(i,ii)=0. —

23.1Corollary. Let t (%), t,(X) be Boolean terms over B. If for all ac 2"

B|—t,(x)=1,(x) then B|——V Xt,(X)=1,(X).

Proof. We just apply the above proposition on ¢z, At,, where A is sym-
metric difference. —

23.2 Corollary (S. Rudeanu). Let t(X) be a Boolean term over a Boolean

algebra B and t(X)= >, t(«)-%* Then
ac2n

B|=VXt(%)=1(%).

Proof. Let B&2% Then

;(ﬁ)= 2 t(a)-B*=1t(PB), hence
ae22n

Bl— A t(@)=1(R), so by corollary 2.3.1
pean

B|—=Vxt(Z)=1(%). o
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233 Corollary. Let t(x) be a Boolean term over B. Then there is a Boole-
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an term h(x) over B so that

Bi=Vih(%)-t(X)= [] t@.

ac2n

Proof. Let g(%) be defined for 2" by g(®)= [] t(x)and h(%)=
ac2n—(p)
= > g(B)-X®. Therefore, for each 82"
e

Bi=h@®)-t®= ]] t(«). Hence by corollary 2.3.2
ac2n

BI=VXh(%)-t(X)= I} (). —

o 2n

Proposition (Boole, Schroder). Let t(x) be a Boolean term over B.
Then the equation t(¥)=0 has solution in B if and only if [] t(®)=0.

ac2n
In other words, B| =3 xt (¥)=0= [] #(x)=0.
a2
Proof. 1° The part B —-3xt(x¥)=0 > H t(x)=0 follows from the

as2n
corollary 2.3.3.

2° Let us prove B|— n t(@)=0 = Ixt(x)=0.
a2

Consider the following Horn sentence
Y=V iy un3x, X, o, (2 Uuy=1 2 A (X)),
ac2n ac2n
Since for «, B&2" B*=1 in case a=0, f*=0 otherwise, it follows
2|—=14. Therefore, by theorem 1.2 ¢ holds on all Boolean algebras.
Assume that Bl— [ #(x)=0. Therefore B|— 2, ' (x)=1.

ae2n ac2n
Since ¢ holds on B, there is ¢ & B so that ¢*<{t'(«) for all a2

Hence for each a<c2" f(a)-¢*=0. Thus  f(x)-3*=0, so by corollary
ac2n
2.3.2 £(¥)=0. -

According to the last proposition, the equation ?(x)=0 has no so-
lution in B if and only if there is ¢ B—{0} and a Boolean term A
over B such that BI=V xh()-t(X)=c.

It should be remarked that all above statements can be proved
using only theorems 1.1,3,4 since all the formulas in question are in fact
Horn universal-existential sentences.

Example. Boolean equation f(x)=0 has solution if and only if f(0)-
-f(1)=0. If f(0)-f(1)=0, then the general solution of above equation
is x=ulAf(u), uCB, since in this case, as it is easily seen, x=xA f(x)
is a reproductive equation which is equivalent to f(x)=0.

Remark. A function f: 4 >4 is reproductive if f2=f.
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Theorem (S. Presic). If f is a reproductive function, then the general
solution in A of x=f(x) is given by x=f(u), ucA.

Remark. By repeated use of consistency condition given by proposition
2.4 and above example, one can solve any Boolean equation f(X)=0
over an arbitrary Boolean algebra B.

3. In [24q] it is shown that if f:C"—C" (C is the field of complex num-
bers) is a polynomial map then: If fis 1—1 then f is onto. In this part
we are giving more examples of similar nature.

Assume that % is a model for a language L. A map f: A"->A" is
an L-map over U if there are terms ¢, ..., ¢, of the language L, =
—LU{a ac A} so that for all ac 4
f(a)::(tl (a)9 sy tn (a))~

Proposition. Assume that a model U is a direct limit of finite models.
Then for every L-map f over U the following holds: (*) If fis 1 — 1 then f is onto.

Proof. Let f(x)=(t,(x, a), ..., t,(X,d)) where GCA and ¢,(X,5) are
terms of L. Consider the following sentence

o= VIVIVZ(N LK) =12, ) = x;=2,\ - - NX,=2,) >
i=1
Vadyv N\ y=1t,(%, 7))
i=1
Let us observe the following facts:
1° ¢ is II, sentence,
2° ¢ holds on all finite models for L.

3° 9[|_<p if and only if for every b <A the map g(¥)=(t, (X, b), .
t,(x, b)) if it is 1—1 then it is onto.

Therefore by theorem 1.4 ¢ holds on U, hence () holds. —
Corollary. Let f:B"->B" be a Boolean map over a Boolean algebra B.

By theorems 1.3, 1.4 and the last proposition follows: If fis 1 —1 then f
is onto.

The above proposition can be applied also in these cases:
1° If (G, +, 0) is an Abelian group in which all elements are of order p
(p is a prime) and
f(x)=(ﬂ} X, 4. +r£,',x,,+al, ,Ln_'{x1+ < +r_n_§.'x,,+a,,),

mj are integers and 4CG.

2° If (G, +,0) is an Abelian group so that every element of G is of
finite order.

3° Let G, be a cyclic group of order p (p is a prime) and G = l_[ G,/

where P is the set of primes and F a nonprincipal ultrafnlter over P.
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Then G is a divisible torsion-free Abelian group and for every {+ }-map f
over G (*) holds. Since the theory of divisible Abelian groups is com-
plete, (¥) holds for any {-+}-map over arbitrary Abelian divisible group.

4° By means of Poor Man’s Lefschetz Principle see [2a,b], (*) holds for
any polynomial map over any algebraically closed field (see [2 a]).

It could be of some interest to consider the converse of (%), namely
(»#) If fis onto then fis 1—1.

The notion of (**) is forma'ized by the sentence

YEVFVEIT A u=1,(5, ) > VEVE(A LF D=1,GF) >
i=1

i=1
Xp=Zy A\ /\xn=zn))'

By inspection it is easily seen that ¢ is a Horn sentence. Hence ¢ is
preserved under (reduced) products of models.

Proposition, Assume that B is a Boolean algebra and f:. B"—B" a
Boolean map. Then: If f is onto then f is 1—1.

Proof. Obviously 2|—¢. By theorem 1.2 ¢ holds on all Boolean alge-
bras and therefore (*x) holds. —

Corollary (Whitehead, Lowenheim). Let f: B"— B" be a Boolean map.
Then: [ is 1—1 if and only if it is onto. —

Remark. For all historical and other facts that concern Boolean func-
tions, maps and equations one should consult [5]. Similar propositions
can be stated for examples 1°, 3°. For example, let G be an Abelian
group so that all elements of G are of order p. Since there are infinitelly
many nonisomorphic such finite groups, by compactness theorem ¢ holds
at least on one infinite Abelian group with all elements of order p. The
first order theory of these groups is k-categorical for k>w, hence ¢
holds on all infinite Abelian groups with all elements of order p, so ()
holds.

With similar argument it can be shown that (%) also holds in the
case of divisible torsion-free Abelian groups.

4. Once P. Kurepa has asked if there is a countable universal model for
partial orderings. We show that countable atomless Boolean algebra Q
with induced ordering is such a one. On the first sight the consideration
that follows seems to be not connected with previous parts of this article,
but we remark that every countable atomless Boolean algebra is free, so
it is in fact the algebra of Boolean terms (over a countable set of vari-
ables).

Using compactness theorem it is easily shown the following

Proposition. Assume that W is a direct limit (of a direct system with
monomorphisms) of submodels of a theory T. Then U is a submodel of T. —|
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Above proposition is a slight modification of Tarski-Maljcev theorem:
If every finitely generated submodel of W is a submodel of T, then U is a
submodel of T.

42 Proposition. Let Q be a countable free Boolean algebra and (Q, <)
induced ordering. If W= (A, <) is a countable partial ordering then U is
embedded into (Q, <).

Proof. Let us observe that every finitely generated submodel of ¥ is finite,
hence U is a direct limit of finite partial orderings. Every finite partal ordering
(X,<)is embedded into some finite Boolean algebra (that embedding is realized
by f()={yEX:y<x}, f:1(X, <)—>(S(X), C), where S(X) is the partitive
set of X) and therefore into (2, <). By proposition 4.1 ¥ is embedded
into some model elementary equivalent to (£, <), and by downward
Lowenheim-Skolem-Tarski theorem into countable one. Sirce the theory of
atomless Boolean algebras is w-categorical, it follows that 9 is embedded
into countable free Boolean algebra. —

43 Remark. If A is a distributive lattice it can be shown that the embed-
ding in question can be chosen so that it preserves finite infimum and
supremum.
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