REDUCED PRODUCTS OF SATURATED INTUITIONISTIC THEORIES

Zoran Marković

(Communicated March 1, 1976)

In [1] Aczél proposed a use of saturated (intuitionistic) theories instead of Kripke-models as a (classical) semantics for intuitionistic logic. He also suggested that a construction analogous to that of ultraproduct could be carried out by means of saturated theories. In the present paper such a construction is proved to be valid and as an example of its applicability a proof of compactness theorem for first-order intuitionistic logic is given.*)

We shall first give a short account of some notions defined in [1] and state (without proof) the basic theorems from [1]. If A is a sentence (closed first-order formula), Ind A denotes the set of all individual constants occuring in A. If Γ is a set of sentences, Ind $(\Gamma) = \bigcup \{ \operatorname{Ind}(A) : A \in \Gamma \}$ and $\operatorname{Cn}(\Gamma) = \{A : \operatorname{Ind}(A) \in \operatorname{Ind}(\Gamma) \text{ and } \Gamma \vdash A \}$ (\vdash denotes intuitionistic consequence relation). A set of sentences Γ is called saturated theory iff it is deductively closed $(\operatorname{Cn}(\Gamma) = \Gamma)$, consistent $(\Lambda \oplus \Gamma)$, where Λ denotes absurdity), prime (if $A \lor B \in \Gamma$ then $A \in \Gamma$ or $B \in \Gamma$) and existential (if $\exists xA(x) \in \Gamma$ then $A(a) \in \Gamma$ for some $a \in \operatorname{Ind}(\Gamma)$). If Γ is a consistent set of sentences let $S_{\Gamma} = \{\Delta : \Gamma \subseteq \Delta \text{ and } \Delta \text{ is saturated} \}$ and let $\Gamma \models A$ mean $A \in \Delta$ for all $\Delta \in S_{\Gamma}$, such that $\operatorname{Ind}(A) \subseteq \operatorname{Ind}(\Delta)$.

Lemma 1. (Strong semantic completeness) (Aczél, Fitting, Thomason) $\Gamma \vdash A \text{ iff } A \in \Delta$, for all $\Delta \in S_{\Gamma}$ such that $\operatorname{Ind}(A) \subset \operatorname{Ind}(\Delta)$.

Let S be the class of all saturated Γ with $\operatorname{Ind}(\Gamma) \neq \emptyset$. For $\Gamma \in S$ let $\mathcal{A}_{\Gamma} = (\operatorname{Ind}(\Gamma), \{P_{\Gamma} : P \in \operatorname{Rel}\})$ be a classical relational structure, where Rel is the set of all relational symbols and $P_{\Gamma} = \{\langle a_1 \dots a_n \rangle : P(a_1 \dots a_n) \in \Gamma\}$. Then $\mathcal{S} = (\{\mathcal{A}_{\Gamma} : \Gamma \in S\}, \subseteq)$ is a Kripke structure, with forcing relation defined for atomic sentences A (with $\operatorname{Ind}(A) \subseteq \operatorname{Ind}(\Gamma)$) by $\mathcal{A}_{\Gamma} \mid \vdash A$ iff $A \in \Gamma$. Let $\operatorname{Val}(\mathcal{S}, \Gamma) = \{A : \mathcal{A}_{\Gamma} \mid \vdash A\}$.

Lemma 2. (Aczél) Γ is saturated iff $\operatorname{Val}_{\mathfrak{S}} \mathcal{S}, \Gamma = \Gamma$.

Lemma 3. For every Kripke model (K, i), (i being a node in the tree K), Val(K, i) is a saturated theory.

Let $\{\Delta_i : i \in I\}$ be a collection of saturated theories and let $L_i = \operatorname{Ind}(\Delta_i)$. We assume $L_i \neq \emptyset$ for all $i \in I$. $\prod_{i \in I} L_i$ be the direct product of sets L_i defined

^{*)} I wish to thank Dr. Aleksandar Kron who suggested to me the use of prime filters instead of ultrafilters.

in the usual way and let F be a prime filter on I. We define usual equivalence relation on $\prod L_i: a \sim b$ iff $\{i: a^i = b^i\} \in F$ (by a^i the i-th coordinate of $a \in \prod L_i$) is understood), and corresponding equivalence classes $a_{l \sim} = \{b \in \prod L_i: a \sim b\}$.

Now we define a reduced product of sets L_i over the prime filter $F: L = \prod L_{i/F} = \{a_{i/\sim} : a \in \prod L_i\}$. Let $\Phi = \{A : \operatorname{Ind}(A) \subseteq L\}$, and for $A(a_{1/\sim}, \ldots, a_{n/\sim}) \in \Phi$ let $A^i = A(a_1^i, \ldots, a_n^i)$. Finally we define:

$$\prod_{i \in I} \Delta_{i/F} = \{A \in \Phi : \{i : A^i \in \Delta_i\} \in F\}$$

Theorem 1. $\prod_{i \in I} \Delta_{i/F} = \Delta$ is a saturated theory.

Proof. 1) Δ is a theory, i.e. $Cn(\Delta) = \Delta$. Obviously $\Delta \subseteq Cn(\Delta)$. Suppose $A \in Cn(\Delta)$. This means that there are $B_1, \ldots B_n$ such that $\vdash (B_1 \& \ldots \& B_n) \to A$. According to Lemma 1. $\vdash C$ iff $C \in \Gamma$ for every saturated theory Γ such that Ind $(C) \subseteq Ind(\Gamma)$, so we have $(B_1^i \& \ldots \& B_n^i) \to A^i \in \Delta_i$ for all $i \in I$. On the other hand $B_k \in \Delta$ $(k \in \{1, \ldots, n\})$ iff $f_k = \{i : B_k^i \in \Delta_i\} \in F$. So $\{i : B_1 \& \ldots \& B_n^i \in \Delta_i\} = f_1 \cap \cdots \cap f_n$, as Δ_i are theories, and since F is a filter $f = f_1 \cap \cdots \cap f_n = F$. So we have

 $\{i: A^i \in \Delta_i\} \supseteq \{i: B_1^i \& \dots \& B_n^i \in \Delta_i\} \cap \{i: (B_1^i \& \dots \& B_n^i) \to A^i \in \Delta_i\} = f \cap I = f \in F$ and that means $A \in \Delta$.

- 2) Δ is consistent. Since all Δ_i are consistent, i.e. $\Lambda \notin \Delta_i$ for all $i \in I$, it follows from the definition of Δ that $\Lambda \notin \Delta$.
- 3) Δ is prime. Let $A \vee B \subseteq \Delta$. That means $\{i: A^i \vee B^i \in \Delta_i\} \in F$. Since all Δ_i are prime theories, $A^i \vee B^i \in \Delta_i$ iff $A^i \in \Delta_i$ or $B^i \in \Delta_i$. If $f_1 = \{i: A^i \in \Delta_i\}$ and $f_2 = \{i: B^i \in \Delta_i\}$ then obviously $f_1 \cup f_2 = \{i: A^i \vee B^i \in \Delta_i\}$ ($\in F$). As F is supposed to be a prime filter, it follows that $f_1 \in F$ or $f_2 \in F$, i.e. $A \in \Delta$ or $B \in \Delta$.
- 4) Δ is existential. In proving this fact we make use of a version of Axiom of Choice. Let $(\exists x) A(x) \in \Delta$. We shall show the existence of an $a_{i \sim} \in L$, such that $A(a_{i \sim}) \in \Delta$. $(\exists x) A(x) \in \Delta$ by definition means $\{i : (\exists x) A^i(x) \in \Delta_i\} \in F$. Since every saturated theory is existential, $(\exists x) A^i(x) \in \Delta_i$ implies $A^i(c_i) \in \Delta_i$ for some $c_i \in L_i$. By the Axiom of Choice, there exists an $a \in \prod_{i \in I} L_i = L$, so that $a_j = c_j$ for all $j \in \{i : (\exists x) A^i(x) \in \Delta_i\}$. Then, obviously, $\{i : A^i(a_i) \in \Delta_i\} \in F$, i.e. $A(a_{i \sim}) \in \Delta$.

Definition. We say that the saturated theory $\Delta = \prod_{i \in I} \Delta_{i/F}$ is the reduced product of the collection of saturated theories $\{\Delta_i : i \in I\}$ over the prime filter F or shorter the prime product.

Compactness theorem. In this section we shall consider only sentences without individual constants, i.e. $A^i = A$ and $A \in \Delta$ iff $\{i : A \in \Delta_i\} \in F$.

We say that a sentence A is satisfiable iff there is a Kripke model (K, i) such that $i \mid \vdash A$. A set of sentences Σ is satisfiable iff there is a Kripke model (K, i) such that $\Sigma \subseteq \text{Val}(K, i) = \{A : i \mid \vdash A\}$.

Theorem (Compactness) A set of sentences Σ (without individual constants) is satisfiable iff every finite subset of Σ is satisfiable.

Proof. One direction is obvious. Let $I = \{\Delta : \Delta \subseteq \Sigma \text{ and } \Delta \text{ is finite}\}$. By hypothesis for every $\Delta \in I$ there is a Kripke model $(K, i)_{\Delta}$ such that $\Delta \subseteq \subseteq \operatorname{Val}(K, i)_{\Delta} = \Gamma_{\Delta}$. By Lemma 3. Γ_{Δ} is saturated. For $\Delta \in I$ let $\Delta^* = \{\Delta' \in I: \Delta \subseteq \Delta'\}$. The set $\{\Delta^* : \Delta \in I\}$ has a finite intersection property, so that it can be a enlarged to a prime filter F. Let $L_{\Delta} = \operatorname{Ind}(\Gamma_{\Delta})$ and $L = \prod_{\Delta \in I} L_{\Delta/F}$. Then the prime product $\Gamma = \prod_{\Delta \in I} \Gamma_{\Delta/F}$ is a model of Σ , i.e. $\Sigma \subseteq \Gamma$ and (\mathscr{S}, Γ) is a Kripke model for Σ (since for any $A \in \Sigma$, $\Delta \in I: A^{\Delta} \in \Gamma_{\Delta}\} = \{\Delta : A \in \Gamma_{\Delta}\} \supseteq \{A\}^* \in F$).

REFERENCES

- [1] P. H. G. Aczél, Saturated intuitionistic theories, in Contributions to Mathematical Logic, ed. H. A. Shmidt, K. Shutte and H. J. Thiele, North Holland, Amsterdam, 1968, pp. 1-11.
- [2] J. L. Bell and A. B. Slomson, *Models and Ultraproducts*, North Holland, Amsterdam, 1971.
- [3] M. Fitting, Intuitionistic Logic Model Theory and Forcing, North-Holland, Amsterdam, 1969.
- [4] S. Kripke, Semantical analysis intuitionistic logic I, in Formal Systems and Recursive Functions, ed. J. N. Crossley and M. A. E. Dummet, North Holland, Amsterdam, 1965, pp. 92—130.