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1. Introduction. This paper is concerned with asymptotic properties
of positive solutions tending to zero, for x — oo, of the equation

(1.1) V'=f(x)e ()

f(¢) and o (¢t) are continuous and postive for ¢>0.

The existence of such solutions is guaranteed e. g. by the following result
of Wong, [1]: Let t~1¢(¢) increase, then the equation (1.1) has solutions ten-

ding to zero if and only if f tf(t)dt diverges.

We assume that f and ¢ belong to a class of functions of frequent use
in various branches of analysis and of stochastic processes, generally called re-
gularly varying functions (in the sense of Karamata who introduced them in
1930, [2]). The recent treatise of Seneta [3] covers the basic theory of such
functions, and we present here some of the definitions and properties which
are needed to formulate and prove our results:

Definition 1. A positive continuous function p defined on (a, ) az=0
is said to be o-regularly varying at infinity if for all A>0

im 222 _ 0
I 163)
where 0<h(M)<oo.
It is known that & (A) = A° and o is called the index of regular variation of p.
All rational or, more generally, explicit algebraic functions are such, this
is also true for the functions

x5 (2 +sin x), f(ln x)~1 dx, etc.
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Definition 2. A positive continuous function L defined on (a, ) is
said to be slowly varying at infinity if for all >0

All positive functions tending to positive constants are such, this is also
true for powers of iterated logarithms or for the function (24 x~!sinx)
log (x+2)+cos x etc.

It follows that p(x)=x°L (x) and that a slowly varying function is an
o-regularly varying one of index ¢=0.

One of the basic properties of such functions is the following:

For 6> —1
(1.2) ft"L(t)d~-rl»~——x°”L(x), x>,
o+ 1
for 6=—1
(1.3) f—L—(thsLl(x)—aoo, X w
t

a

where L, (¢) is a new slowly varying function such that L, (¢)/L(t) —> o, x — o,
whose behavior cannot be expressed by a single formula for any L (f), which
is shown e.g. by the examples L(¢)=1In¢, and L (f)=(Int)~-! when for x — o

ft“lL(t)dt~—;~ln2x and ft‘lL(t)dt~lnx

a

respectively.
The following result, more general then (1.2), holds, [4]:

Proposition: 1. Let ft"}f(t)[dt converge for some n>0, then

[£1

fwf(t)L(x tydt~L (2) ff(t)dt, A—> 0.

We need also [3 p. 52

Proposition 2. For any e>0, x <L(x) is almost decreasing and
x* L (x) is almost increasing for x> x,.

In that we say (following S. Bernstein) that g is almost increasing if
X, <<x, implies g(x,)<<Ag(x,), A>1; almost decreasing functions are defined
likewise.

M ° By replacing the limiting procedure in Definition 1 by a boundedness

condition (holding for a finite':interval_of 2) one generalizes the preceding
class as follows [5], [6] (Cf. [3)):
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Definition 3. A positive continuous function g defined on (a, ) is
said to be O-regularly varying at infinity, if

m<g(hx)lg ()< M, l<i<a
where m, M and a are any constant such that O<m<1, 1<M< o, 1<a< .

All positive functions bounded away from both 0 and o are such, this
is also true for the functions 2+sinx, x{1+psin(2= logx)} with small p etc.

Another characterization of such functions is more suitable for our pur-
poses [7], [8]:

Proposition 3. A positive continuous function g defined on (a, ) is
O-regularly varying at infinity if and only if there exist real numbers p, q q<p
such that x* g (x) is almost increasing and x9g(x) is almost decreasing for x > x,.

The proof of the above result can be found in [7] together with some
additional properties of functions in question. We conclude by the remark that
regular variation of g (x) (both o— and O —) at 0 is defined as the one at infinity

il

2. Results. These consist of asymptotic estimate of y(x) for large x,
expressed by inequalities, and of precise asymptotic behavior, but it turns out
that the former play a fundamental role in the whole consideration.

2.1 Asymptotic estimate. The core of the subject is the

Theorem 1. Let f(x) be O-regularly varying at infinity and such that

-

@.1) [fWydi=o,

a

and let ©(y) be O-regularly varying at 0 and such that for y — 0
(2.2) vy "o (y) almost decreases for some r>1,

then, there exist two costants 1>0, I>1, such that for every positive solution y(x)
of (1.1) tending to zero, there holds for x> x,

X x

2.3) l{ftf(t) a’t}_l <_‘\°_§)Z(§’)‘_)Z<l{fy’(t)dt}“l,

a a

so that y(x) is O-regularly varying at infinity.

By restricting the growth of f(x) the integral in (2.3) can be disposed of;
more precisely there holds [9]:

Corollary 1. Let f(x) be O-regularly varying at infinity and such that

(2.4) xX? f(x) almost increases for some p<2,
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and let ¢ (y) be O-regularly varying at O and such that for y — 0
(2.2) Yy~ ro(y) almost decreases for some r>1,

then there exist two constants [>0, I>1 such that for every positive solution y (x)
of (1.1) tending to zero, there holds for x> x,

@.5) 10yt < FYD T oy

y(x)
Notice here that, since in the condition (2.4) one has p<2, Corollaity 1 does
not cover e.g. the equation y”"=x"2y* A>1 where, in fact, y(x)~c (Inx)1'0=»,
x — o[10, p. 150] more generally any of the equations (1.1) in which x?f(x)=
= (x) where x*¢(x)—>o0, x7¢¢(x)— 0 for arbitrary ¢>0.

Theorem 1, however, applies to that situation also. By assuming that
¢ (x)=L(x) — a slowly varying function, one obtains the following result which
we shall need for deriving precise asymptotic formulae:

Corollary 2. Let

(2.6) ft-lL(t) dt = oo

and let ¢ (y) be O-regularly varying at 0, and such that for x—0
2.2) Yy "o (y) almost decreases for some r>1,

then there exist two constants 1>0, 1> l such that for every positive solution y (x)
tending to zero, of the equation

V'=x2L(x)(y)
there holds for x> x,

X X

2.7 l{ft“IL(t)dt}_l<%)(‘;))<l{ft"L(t)dt}—l.

a

The occuring integral cannot be disposed of in general, since it requires dif-
ferent treatments for different L (¢) due to (1.3).

2.2 Asymprotic behavior. 1If we restrict the class of considered equation
by taking f(x) to be o-regularly varying i.e. f(x)=x°L(x) and ¢ (y)=* r>1,
we obtain the precise asymptotic behavior of solutions in question:

Theorem 2. For every solution tending to zero, of the equation

(2.8 Y =x%L(x)y*, A1,
there holds:

a) For o> —2, y(x) is o-regularly varying at infinity and
1 1
(2.9) YO~ +r+0)2+0) (1 -0 a2 o L ()} x> oo,
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b) for 6= —2, y(x) is slowly varying at infinity and
1 1

(2.10) y ()~ — I)H{ft'lL(t) dt}ﬂ, X—>00.

This clarifies the behavior of such solutions of (2.8) completely, since
these do not exist for o< —2 due to the Wong’s result.

Part a) i.e. (2.9) was proved by Avakumovi¢ [11]. Formulae (2.9) and
(2.10) generalize corresponding results of Fowler where L (x)=1, cf. [10, Ch. 7].

3. Proofs. First notice that, by using the Proposition 3, one concludes
that for the functions / and ¢, in addition to (2.1) and (2.2) the following hold:
For large x,

(3.1) xPf(x) almost increases for some p,

(3.2) x9f(x) almost decreases for some g<<p,

for small y:
3.3) y~S@(y) almost increases for some s>r>1.

Notice also that solutions in question are convex due to the positivity
of f and ¢, and that »'(x) is negative and tends to zero for x—>o0.

All inequalities occuring in the proofs take place for x> x, which will
be, therefore, occasionaly omitted. Furthermore, all minorizing constants will
be denoted by the same letter m and similarly all majorizing ones by M,
whenever possible. This is done to simplify the notation and because we are
not interested in the actual values of the constants, though all these can be
computed in terms of previously occuring ones.

3.1 Proof of Theorem 1. We first prove the inequality

X

o(y(x) - -1
3.4 at <l t di R > X,
(3.4) o <{ff(l) r} x>

a

To that end, integrate (1.1) over (x, kx) with an arbitrary fixed k>1 and use
¥ (x)<0; this gives

kx
Y@= [fO e @)d

Or, for large x and hence for small y, because of (3.1) and (2.2),

kx

—y () > mx? f(x) @ (y (kx)) [ ¢=Pdt.
Whence for p##1 i
(3.5 =¥ (x) > mxf(x) o (y (kx))

holding for all k>1 and x> x, Notice that if it were p= 1, we could take
any p>1 since (3.1) a fortiori holds for any such p.
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On the other hand, by multiplying (1.1) by —y'(x) and integrating over
(x, kx) one obtains

J"Z(x)>fk)}(f)<P(y(t))(—dY)
or, by (3.1) and (3.3) i )
Y2 Emx? f(x) y= () o (y () [ vy (- ).
Whence, for all k> 1, and x> x, ’

)\ (5+1)/2
(3.6) =Y @)= m{f(x)y (x)p(y(x)}? { 1- (J;(:c;))) +1) }

From (3.5) and (3.6) we shall derive the inequality

3.7 —Y W@ (), x> %

To that end we consider the quotient K (x)=y (kx)/y(x) arising from (3.5) and
occuring in (3.6). One has 0<K(x)<1, hence the behavior of K(x) is essential
for the further use of (3.5) and (3.6). For, when e.g. lim K(x)=1, (3.6) is

k—o0

useless. In order to be able to cope with all possible kinds of behavior of K (x)
we use the following Lemma on convex functions proved earlier by the authors
[9], which is independent of differential equations.

Lemma. Let y(x) be a positive, continuous, convex function defined for
x>0, decreasing to zero for x— oo, and let {x} be a sequence such that x,— o,
i— oo, If for some 1<k<2 and some 0<r <1 there holds

J’(kx,')<r,
y(x)
then there exist numbers 0<u<1, 0<r<1, k,>1 such that

y_(kﬁ<r for all xEwx, x)]

y(x)

Due to the continuity of y(x) the following alternative holds (Cf. [9):

Let 0<r'<l1, 1<k<2, x> x,, then:
Either

(3.8) &)
y(x)
for all x belonging to some intervals I, n=1, 2, ..., which may be all ulti-

mately neighboring, when | I,,=[a, ) for some a>x,, or
n=1

3.9) 4L
y(x)
for all x belonging to some intervals I', n=1,2,..., which again may be all

ultimately neighboring when U I'=[a, »), a> x,.
n=1
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If (3.8) holds, then by applying the condition (3.3) to the following form
of the inequality (3.5)

—y ()5 maf (1) PEED ey,
¥ (kx)

one obtains (3.7) for all x<1,, with some constant m’ computed in terms of
previous ones.

If, on the other hand (3.9) holds, we show first that for all x<1I?

y ()
(3.10) ————>mx" f (x).
Pr()
To that end choose a sequence {x,} such that x, is an arbitrary point of I},

n=1,2,..., so that (3.9) holds for x=x,. Then, because of the Lemma, there
exist numbers 0<u<<1, k,;>1 such that

yM<r’ for all x&[ux,, x,].
y(x)

Hence, from (3.6) with k=k, and the above inequality, there follows
@B.11) ~Y )=m{f()y @) e N, xClpx, x,,
or

- roY12 by 112 —gf2
(3.12) f {—y—} y O dyy>m f wf@) todr.

e
wxn wxp

The lefthand side of (3.12) is, by the use of (2.2), majorized by

. 7z o
N

wXxp

Similarly the righthand side of (3.12) is, by the use of (3.2) with g#2, mino-
rized by

xn

m (x93 f(x,)? f t—92 gt
®wXxn
Hence, by integrating both of the above integrals, taking care of r>1 and
g+#2, (3.12) is reduced to (3.10) with x=x,. Since x, is arbitrary in I, the
inequality (3.10) is proved for all xC1I). Notice again, that if g=2 one

could take any g< 2 since (3.2) holds a fortiori for any such g. Now. from
(3.11) which is valid for all xCI, x, being arbitrary in these intervals, and

from (3.10) put in the equivalent form
(VX y X oy NV =mxf(x) ¢ (¥ (x)),

one obtains again (3.7) for all xZI’, with some constant m’’ computed in terms
of previous ones.. Consequently, the inequality (3.7) holds with m = min (m’, m’")
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for all x>a>x, since one has I,UI'=[a, ©) according to the definition
n=1
of the intervals I,, I'.

To conclude the proof write (3.7) as

x

(3.13) f ;’(ly;y-'(~dy)>'n f o (1) dt

and, using (2.2) as before, majorize the lefthand side of (3.13), by M‘J(}()E)))—
o (x
which yields (3.4).
Next we prove the inequality

X

-1
(3.14) l{ftf(r)dt} <POM) o
-1, Y@
using again the alternative (3.8) — (3.9). Let (3.8) hold and take an arbitrary
x&1,, then we proceed as in [9, p. 265]: Define ¥, (%) as follows: y, (x)=y(x),
xcl, y(x)=c,, x&I, where the constant ¢, coincides with the value of
y(x) in the righthand end of I, n=
=1,2,...; see Fig. 1. Hence y(x) is
continuous outside of a countable set of
points and y," (x) =" (x), ," (x) = y" (x)
for x&I, and y/'(x)=p, (x)=0 else-
where. Consequently due to (2.2) there
\ holds the following inequality

\ B.15) 3 <M o, (¥), x>x,
\__.

Moreover, due to the definition of y, (x)

\"T the functions yi"¢(y) and yi* o(y)

T~ also satisfy the conditions (2.2) and (3.3).

- - — - L Take x< I, and let firstly kxc 1 ;

& = * . then using (2.2) and (3.2) as before
Fig. 1 one gets

' (kx) =y ()<Mf (%) 9 (y, (x)),

or by another integration over (a, x) for some az=x,,

X

3.16 kD=3 O 44y dr.
G189 f en@) f’f(’)’

In order to minorize the lefthand side of (3.16) write it as the difference of
two integrals the first of which is minorized by (3.3) and the second majorized
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by (2.2); whence, the left hand side of (3.16) is minorized by

@ [ W (RO,
PO NS W) PO NI 3O

or, using (3.8) and integrating, by

y1(x) {M . m (yl(x)
ey, () lr—1 k(s—1) », (kx)

and finally, due to (3.8) and since 1<r<ts, by y, (x)9~'(y (X)NM —mfk).
Consequently by choosing & such that

s—1 r—1
) Lo (x))}

(3.17) M-—mlk=1>0
one obtains
(3.18) fyl, (kt)—}"1l (t)dt>m y1(x) )

: oy, (1) ¢y, (%)
Inequalities (3.16) and (3.18) give together

) ;
(3.19) i——<Mf o (1) dt
¢ (¥, (x)) .

holding for x&1, if also kx I,. If, however, kx¢ I, then y'(kx)=0 so that
(3.19) follows readily from (3.16). Since y,(x)=y(x) for xcI,, inequalities
(3.19) and (3.14), with /=M1 coincide in the intervals I. We are left, there-

fore, with the proof of (3.14) in the intervals I in which there holds (3.9).

As in the previous case integrate (1.1) over (x, kx) k>1 and make use
of (3.2) and (3.3); this leads to

Y (kx)—y (x) < Mxf(x) ¢ (¥ (x)),

and by repeating the procedure to
kx

y(x)- ( I+ 71) ykx)<Meo(y () f af(ryr-adr.

Using (3.9) and (3.2) with g2, one obtains

(3.20) y(x) {r'(l+%)—%}<Mx¥(x)cp(y (x)
which is reduced to
(3.21) YyX)<MAf(x)e(y(x), X=X

by choosing k such that — in addition to (3.17) — r'(1+1/k)—1/k=7>0.
Since, because of (3.2), the relation

(3.22) (<M f fOd,  x>x,
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is obvious, the wanted inequality (3.14) for xCI: tollows from (3.21). This
completes the proof of Theorem 1.

3.2 Proof of Corollary 1. Since p<2 the condition (2.1) is fulfilled and
the Theorem 1 applies. Furthermore (3.22) holds so that for the proof only
the inequality

X

(3.23) ftf(t)dt< x2f(x), x>=x,

a

is still needed. But, because of (2.4)

fx o () di < Mx?f (x) fxt*"“dt< Mx2f(x).

a

Now (2.3), (3.22) and (3.23) together give (2.5) ged.

3.3 Proof of Corollary 2. The function f(x)=x"2L(x) is O-regularly vary-
ing at infinity because of Proposition 2 and 3. Since all other conditions of
the Theorem 1 are fulfilled by hypothesis it applies again giving (2.8).

3.4 Proof of Theorem 2. We have to prove only part b) since, as we
mentioned in the introduction, part a) has already been proved.

We first show that y(x) is slowly varying and then apply Proposition 1.
X

Put Ll(x)z[fr-lL(z)dt}N, N>0.
a

The occuring integral diverges due to the Wong’s result so that the slowly
varying function L, (Cf. 1.3) tends to infinity with x. By differentiating
y(x) L, (x), using y' (x)= —ft—zL(t)y7* (t)dr and the righthand inequality in

(2.7) with @(y)=»*, one obtains for X=X,
LX) =Zx1y(x)L(x) ( fxt-l L) dt)N‘l{N—F“l}.

By taking large N, it follows that the above derivative is positive so that
Y(x) L, (x) increases. Hence for x>x, and k>1 (similarly for k<1) one has
Y@ L (x)<y(kx) L, (kx)and so, y (x) being decreasing and L (x) slowly varying,

12 &0 L ()

= >1— g, x>x0.
y(x) L (kx)

Therefore y(x) is slowly varying according to the Definition 2.
Now put y'(x) in the form

-y (%)= x“‘ft‘2 L* (xt) dt
i
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where L*(t)=L(f)y*(t) is a slowly varying function as a product of such ones
and apply the Proposition 1; this gives —y' (x)~x"1L (x)y*(x), x> . By
dividing through y*(x) and integrating over (a, x) one obtains (2.11) bearing

in mind that f t~1L(t)dt — o0, x — oo. This completes the proof of Theorem 2.
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