A FIXED POINT THEOREM WITH A FUNCTIONAL INEQUALITY

S. A. Husain and V. M. Sehgal

(Received March 18, 1976)

In a recent paper [1], Cirić investigated mappings f on a complete metric space (X, d) that satisfy the following condition: there exists a constant k < 1 such that for all $x, y \in X$,

(1)
$$d(fx, fy) \le k \max\{d(x, fx), d(y fy), d(x, y), d(x, fy), d(y, fx)\},\$$

and showed that such mappings have a unique fixed point in X. The purpose of this paper is to strengthen Ciric's result by considering mappings that satisfy a functional inequality.

Throughout this paper, let (X, d) be a complete metric space, R^+ the nonnegative reals and $\varphi:(R^+)^5 \to R^+$ is a continuous function which is non-decreasing in each coordinate variable and satisfies the condition $\varphi(t, t, t, t, t) < t$ for any t>0.

The following is the main result of this paper.

Theorem 1. Let $f: X \to X$ satisfy the condition: for all $x, y \in X$,

(2)
$$d(fx, fy) \leq \varphi(d(x, fx), d(y, fy)) d(x, y), d(x, fy), d(y, fx)).$$
If for some $x_0 \in X$

(3)
$$\sup \{d(x_0, f^n x_0) : n \in I \text{ (positive integers)}\} < \infty.$$

Then f has a unique fixed point in X.

Proof. For each $n \in I$, let

$$\delta_n = \sup \{ d(f^p x_0, f^q x_0) : p, q \ge n \}$$

Then by (3) $\delta_n < \infty$. Since $\delta_n(n \ge 1)$ is a nonincreasing sequence in R^+ , there is a $\delta \ge 0$ such that $\delta_n \to \delta$. We claim that $\delta = 0$. If $\delta > 0$ then for any $p, q \in I$,

$$d(f^{p}x_{0}, f^{q}x_{0}) \leq \varphi(d(f^{p-1}x_{0}, f^{p}x_{0}), d(f^{q-1}x_{0}f^{q}x_{0}), d(f^{p-1}x_{0}, f^{q-1}x_{0}), d(f^{p-1}x_{0}, f^{q}x_{0}), d(f^{q-1}x_{0}, f^{p}x_{0}))$$

Therefore, if $p, q \ge n$, it follows that

$$\delta_n \leq \varphi(\delta_{n-1}, \delta_{n-1}, \delta_{n-1}, \delta_{n-1}, \delta_{n-1}, \delta_{n-1})$$

and hence by the continuity of φ , $\delta \leqslant \varphi(\delta, \delta, \delta, \delta, \delta) < \delta$, a contradiction. Thus $\delta = 0$. This, implies that $\{f^n x_0\}$ is a Cauchy sequence in X and hence, by completeness, there is a $u \in X$ such that $f^n x \to u$. Now, since

$$d(fu, f^{n+1}x_0) \leq \varphi(d(u, fu), d(f^nx_0, f^{n+1}x_0), d(u, f^nx_0), d(u, f^{n+1}x_0), d(f^nx_0, fu).$$

Therefore, as $n \to \infty$ the above inequality yields

(4)
$$d(fu, u) \leq \varphi(d(u, fu), 0, 0, 0, d(u, fu)).$$

If d(u, fu) = t > 0 then by (4)

$$t \leqslant \varphi(t, t, t, t, t) < t$$

a contradiction. Thus fu = u.

To prove uniqueness, suppose there is a $v \neq u$ for which fu = u and fv = v. Let r = d(u, v) > 0. Then by (2)

$$r = d(u, v) = d(fu, fv) \le \varphi(0, 0, r, r, r) < r,$$

contradicting r > 0. Thus v = u.

Corollary 1. Suppose $f: X \to X$ satisfies either (1) or the condition: there exists nonnegative constants a, b, c with 2a+2b+c<1 such that for all $x, y \in X$,

(5)
$$d(fx, fy) \le a(d(x, fx) + d(y, fy)) + b(d(x, fy) + d(y, fx)) + cd(x, y)$$

Then f has a unique fixed point in X.

Proof. Since (5) implies (1) with k=2a+2b+c, it suffices to prove the result satisfying condition (1). Now, it follows (see Cirić [1]) that mappings (1) also satisfy (3) for each $x \in X$. Further, defining $\varphi: (R^+)^5 \to R^+$ as

$$\varphi(t_1, t_2, t_3, t_4, t_5) = k \max\{t_i, t_2, t_3, t_4, t_5\},\$$

it is easy to verify that φ satisfies the conditions of Theorem 1. Thus f has a unique fixed point in X.

It may be remarked that several fixed point theorems have been obtained (see Hardy & Rogers [2], Kannan [3], Reich [4], Sehgal [5]) under condition (5) when some of the constants in (5) are zeros. All these results are special cases of (1) and hence of Theorem 1. Now, we give a simple example of a mapping f that satisfies (2) but not (1) for any value of k < 1.

EXAMPLE. Let $X = [0, \infty)$ with d(x, y) = |x - y|. Define a mapping $f: X \to X$ by

$$fx = \frac{x}{1+x}$$

and let $\varphi:(R^+)^5 \to R^+$ be defined as

$$\varphi(t_1, t_2, t_3, t_4, t_5) = \frac{t_3}{1+t_3}.$$

Then it is easy to verify that φ satisfies all the conditions of Theorem 1. Furthermore, for any $x, y \in X$,

$$d(fx, fy) = \frac{|x - y|}{1 + x + y + xy} \le \frac{|x - y|}{1 + |x - y|} = \varphi(|x - fx|, |y - fy|, |x - y|, |x - fy| |y - fx)|$$

Thus (2) holds. Since f satisfies (3) for each $x \in X$, therefore, Theorem 1 applies and in fact f0=0 is the unique fixed point of f in X. However, f does not satisfy (1), for otherwise there is a k<1 such that for all $x \in X$

(6)
$$\frac{x}{1+x} = d(f0, fx) \leqslant k \max \left\{ 0, \frac{x^2}{1+x}, x, \frac{x}{1+x}, x \right\}.$$

Since for any $x \in \mathbb{R}^+$, $\frac{x^2}{1+x} \leqslant x$, it follows by (6) that for each $x \geqslant 1$, $\frac{x}{1+x} \leqslant kx$ that is $\frac{1}{1+x} \leqslant k$ for each $x \geqslant 1$. This is clearly impossible. Thus, f does not satisfy (1) for any value of k < 1. Therefore, Ciric's result (with Condition (1), Corollary 1) is in fact a special case of Theorem 1.

REFERENCES

- [1] Čirić, L. B., A generalization of Banach's contraction principle, Proc. Amer. Math Soc. 45 (2) (1974) 267-273.
- [2] Hardy, G. E. & Rogers, T. D., A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (2) (1973) 201—206.
- [3] Kannan, R., Some remarks on fixed points, Bull. Calcutta Math. Soc. 60 (1968) 71-76.
 - [4] Reich, S., Kannan's fixed point theorems, Boll. Unione Mat. Italiana, 4 (1971) 1-11.
- [5] Sehgal, V. M., Some fixed and common fixed point theorems in metric spaces Canad. Math. Bull., 16 (4) (1974) 257—259.

Department of Mathematics University of Wyoming Laramie, Wyoming 82071 USA