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In this paper we shall consider digraphs G with finite number of vertices
and arcs. G may possess loops.

Let A be the adjacency matrix of G. Then the characteristic polynomi-
al of 4

(1) DG, N=detQI-A)= > a(G)1!

i=0
is called the characteristic polynomial of the digraph G, where 7 is the number
of vertices of G. For brevity we write @ (G, »)=® (G).

The zeros of ®(G) form the spectrum of G. Two digraphs G, and G,
are called isospectral if they have the same spectrum.

Let ¢(G) denote the number of components of G. If these components
are H,, H,, s Hogp we will write G=H OH,®: - -®H_, g Of course,
@ (G)= CI)(H)CD(HZ) @ (H,(g)-

We denote by E =E‘;q the digraph containing (exactly) two vertices p
and ¢ and the arc e= g:,q joining p with g. Analogously, E=E,, will denote

—

the digtaph containing the two vertices p and g and the two arcs e,, and e,

It is both convenient and consistent to replace the pair of arcs e and e,, by
an edge e=e,. Accordingly, every (undirected) graph can be understood as
being a dlgrapﬁ

Let H be a subgraph of G. Then G— (H) will denote the digraph obtai-
ned by deletion of all arcs contained in H from the digraph G. Further, G~ H
will denote the digraph obtained by deletion of vertices of H and all arcs
incident with them from the digraph G. If ¢(G—(E))=c(G)+ 1, the edge e
will be called a bridge.

A (directed) cycle Ck of the length k is a (strongly) connected digraph
with k vertices, exactly one arc starting from and .ending at every vertex. Note
that E is a cycle of length 2. Morecover, every loop will be understood as a
cycle of length 1. A digraph, the only components of which are cycles is

called a linear digraph L.
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We define two classes C, and P, of digraphs.
A digraph G belongs to the class C, if it contains a subgraph Ek such
that c(G—(Ek))=c(G)+k. The structure of a digraph GE&C, can be presented

as in Fig, 1, with H, H,, ..., H, being arbitrary digraphs. Obviously, G — (Ek):
=H ,OQH,®D - - - DH,. Hence, the members of C, possess a loop, while the
members -of C, possess a bridge. Note also that 6kE C,.

A digraph G belongs to the class P, (k>>3) if it contains two bridges e,
and e,_, such that G—(E)~(E_)=H®H,QP,_,, with H, and H, being
arbitrary digraphs and P, being the path with n vertices. The structure of the
digraph G& P, can be represented as in Fig. 2. It is convenient to define also

GeC; Ge Py GeP, GePy

GeCy GeC,

Fig. 1 Fig. 2

the classes P, and P,. A digraph G belongs to P, if it éontains a bridge and
belongs to P, if it contains a cutpoint. Of course, P,=C, and P,_,CP,. Note
also that P, € P,.

If e is a bridge, the following relation exists between the characteristic
polynomials of G, G~ (E) and G- E. :

Theorem 1.
2) P(G)=P(G—-(E))-DP(G-E).

Formula (2) has been first used by Coulson and Longuet-Higgins [1],
but without proof. In chemical [2] and mathematical literature [3,4] the proofs

of Theorem | have been given independently. It is worth mentioning that (2)
is of some importance in theoretical chemistry (e.g. see [5D.

Since all edges of a tree (or more general of a forest) are bridges, we have

Corollary 1.1. Eq. (2) applies to an arbitrary edge of a tree.

If g is a vertex of degree omne, adjacent to the vertex p, the application
Theorem 1. gives

Corollary 1.2.
C(G)=rP(G-q) =D (G—p-—g).

In particular, for a path P, we have,

3) @ (P,) =2®@(P,_)) - D (P,_,).

In the present paper we offer generalizations of both (2) and (3).
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Theorem 2. If GEC,,

(4) ® (G)= D (G- (C) - D (G- Cp.

Proof. According to a theorem of Sachs [6], the coefficient g, (G) of
the characteristic polynomial (1) can be calculated from the equation

(5) 4,G)= 3 (-1y®
TeLi (6

where the summation goes over the set L,(G) of all linear digraphs L with
vertices, which are contained as subgraphs in G. Now, from the definition of

the class C, it follows that the vertices belonging to Ek appear in a linear

subgraph of G only if the cycle Ek is a component of this linear subgraph.
Let us, therefore, divide the set L,(G) into two subsets L, (G) and L, (G),

where ZEL“ (G) if Ek is a component of L and ZEL,.Z (@) if Ek is not a
component of L But then L, (G)=L; (G—(Ek)). Moreover, there is a one-to-
-one correspondence between the elements of L, (G) and L,_, (G—Ek). Namely,
if ZELi_k(G—gk), then Z@EkEL“(G). Substituting these relations back into
eq. (5) we have

a@= 3 (=D®+ 3 (—lpwes

e — — —_
LeLi(G—(Ck)) LCLi _k(G—Ck)

=a,(G—(C ) ~a,_;, (G—Cp).
Theorem 2 follows now immediately from (1).

Corollary 2.1. For k=2, Theorem 2 becomes Theorem 1. For k =1,
namely if G has a loop, say on the vertex p, we have

D (G)=D(G)-P(G-p)

with G°" being the digraph obtained after the deletion of the loop from the ver-
tex p of G.

Corollary 2.2. If two digraphs G, and G, from the class C, fulfill

the relations ® (G, — (C—)'k)) =P (G,— (Ek)) and ® (G, — CT,:) =D (G, 6;,), they are
isospectral.

As a consequence of this corollary, one is able to
construct numerous multiplets of isospectral nonisomor- Ol
phic digraphs. For example, the simplest pair of isospec-
tral digraphs of this kind belongs to C,. One should note, 5, G
however, that the finding of isospectral digraphs presents
no serious problem [3, 7, 8]. Fig. 3
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As it is well known [9], the requirement that every two vertices of a
graph are joined by a unique path can be taken as the definition of a tree.
Let us extend this definition to digraphs. A ditree is a digraph with the property
that every two vertices are joined by a unique directed path.

It is easily seen that a ditrec is composed entirely from (dirccted) cycles.

Two cycles C, and C, in a ditree are either disjoint or have exactly one
common vertex. Therefore, every cycle of length k& contained in a ditree fulfils
the requirements for the class C,, and analogously to Corollary 1.1 we have

Corollary 23. Egq. (4) applies to an arbitrary cycle of a ditree.

Let us consider now a digraph G,&P,. According to the definition of
the class Py, G, contains a sequence of vertices v, v,, , ..., v, such that the
vertices v; and v;,, are joined by a bridge ¢, (i=1,..., k—1). By definition,
the digraph G,_,c P,_, is obtained from G, by deleting the vertex v, and
joining the vertices »,_, and v,., by a new edge.

We will show now that the validity of (3) is much wider and is not
restricted to digraphs with a vertex of degree one.

Theorem 3. For all G,&P,,
(6) @ (G = 2P (Gy_y) ~ P (G _y)-

Proof Let G, —(E)=Q®R,_;, where Q, and R,_; are digraphs obtai-
ned by joining of the end vertex of P,_, to an arbitrary digraph H, and of

Py_,_, to an arbitrary digraph H,, respectively. Then it is also G,— E,=
=Q,_\®R,_,_,, and by Theorem 1,

PGY=P(Q)PR_) ~ PO, ) (P (R
Besides, since R, contains a vertex of degree one,
PR_)=MD(R,_,_)—DP(R,_;_,).

An analogous relation can be written also for ®(R,_,_,). After appropriate
transformations we get,

C(G) =P Q)P (Ri_;_) - DP(Q; ) P (R, )]~
—[@ Q)P (R ;) —P(Q;_) P (Ri_;_3)]
which immediately yields (6).
Corotilary 3.1.
D(G)=P(G) P(P,_,) —DP(G) D (P,_,).

Proof. From (6) it follows straightforwardly that

W_4 —Vaz—a ¥
Q(Gk)za[%u] W[X_V;__a]
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where o and B are to be determined from the knowledge of, say, ®(G,) and
® (G,). Substituting A =2 cos ¢, one obtains

@ (G,) = o exp (ikt) + B exp (— ik?)
which yields
sin (k—2) ¢
sin ¢ '

‘ in(k—1
®(Go-0 (G TE=DL

-®(G))-
sin (kj-+ 1) ¢

If we set G, =P, ®(P)=\ @®(P,)=2>—1, we obtain ®(P)= -
sin ¢

from which the Corollary 3.1 follows straightforwardly.

Corollary 3.2. The characteristic polynomials of the graphs G, ... , G
(see Fig. 4) are given by

cos[Qk+1)1/2]
cos(1/2)
@ (G, = 2(cos t— 1)%2 ,
sint.
D (Gy)=4costcos(k+1)t,
®(G,)= —8cos tsin (¢/2)sin [(2k + 1) /2],
sin (k + 1) ¢
sin ¢

Y (Gl) =

® (G))=16cos* t (cos’ t— 1)

where h=2cos t.
Oy OO
G, G,

t 2 L3 t 2 K 1 2 K
Gy G, G5

Fig. &

From these expressions the spectra of G, ..., G5 can be deduced without
difficulty. The spectra of G; and G have been obtained earlier [10].
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