## GENERALIZATIONS OF A RECURRENCE RELATION FOR THE CHARACTERISTIC POLYNOMIALS OF TREES

## Ivan Gutman

(Received November 1, 1976)

In this paper we shall consider digraphs G with finite number of vertices and arcs. G may possess loops.

Let A be the adjacency matrix of G. Then the characteristic polynomial of A

(1) 
$$\Phi(G, \lambda) = \det(\lambda I - A) = \sum_{i=0}^{n} a_i(G) \lambda^{n-i}$$

is called the characteristic polynomial of the digraph G, where n is the number of vertices of G. For brevity we write  $\Phi(G, \lambda) = \Phi(G)$ .

The zeros of  $\Phi(G)$  form the spectrum of G. Two digraphs  $G_1$  and  $G_2$  are called isospectral if they have the same spectrum.

Let c(G) denote the number of components of G. If these components are  $H_1, H_2, \ldots, H_{c(G)}$ , we will write  $G = H_1 \oplus H_2 \oplus \cdots \oplus H_{c(G)}$ . Of course,  $\Phi(G) = \Phi(H_1) \Phi(H_2) \cdots \Phi(H_{c(G)})$ .

We denote by  $\overrightarrow{E} = \overrightarrow{E}_{pq}$  the digraph containing (exactly) two vertices p and q and the arc  $\overrightarrow{e} = \overrightarrow{e}_{pq}$  joining p with q. Analogously,  $E = E_{pq}$  will denote the digraph containing the two vertices p and q and the two arcs  $\overrightarrow{e}_{pq}$  and  $\overrightarrow{e}_{qp}$ . It is both convenient and consistent to replace the pair of arcs  $\overrightarrow{e}_{pq}$  and  $\overrightarrow{e}_{qp}$  by an edge  $e = e_{pq}$ . Accordingly, every (undirected) graph can be understood as being a digraph.

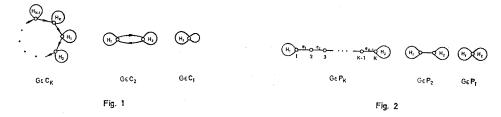
Let H be a subgraph of G. Then G-(H) will denote the digraph obtained by deletion of all arcs contained in H from the digraph G. Further, G-H will denote the digraph obtained by deletion of vertices of H and all arcs incident with them from the digraph G. If c(G-(E))=c(G)+1, the edge e will be called a bridge.

A (directed) cycle  $\overrightarrow{C_k}$  of the length k is a (strongly) connected digraph with k vertices, exactly one arc starting from and ending at every vertex. Note that E is a cycle of length 2. Moreover, every loop will be understood as a cycle of length 1. A digraph, the only components of which are cycles is called a linear digraph  $\overrightarrow{L}$ .

We define two classes  $C_k$  and  $P_k$  of digraphs.

A digraph G belongs to the class  $C_k$  if it contains a subgraph  $\overrightarrow{C}_k$  such that  $c(G-(\overrightarrow{C}_k))=c(G)+k$ . The structure of a digraph  $G\in C_k$  can be presented as in Fig. 1, with  $H_1,\,H_2,\,\ldots,\,H_k$  being arbitrary digraphs. Obviously,  $G-(\overrightarrow{C}_k)=H_1\oplus H_2\oplus\cdots\oplus H_k$ . Hence, the members of  $C_1$  possess a loop, while the members of  $C_2$  possess a bridge. Note also that  $\overrightarrow{C}_k\in C_k$ .

A digraph G belongs to the class  $P_k$   $(k \geqslant 3)$  if it contains two bridges  $e_1$  and  $e_{k-1}$  such that  $G - (E_1) - (E_{k-1}) = H_1 \oplus H_2 \oplus P_{k-2}$ , with  $H_1$  and  $H_2$  being arbitrary digraphs and  $P_n$  being the path with n vertices. The structure of the digraph  $G \in P_k$  can be represented as in Fig. 2. It is convenient to define also



the classes  $P_2$  and  $P_1$ . A digraph G belongs to  $P_2$  if it contains a bridge and belongs to  $P_1$  if it contains a cutpoint. Of course,  $P_2 = C_2$  and  $P_{k-1} \subset P_k$ . Note also that  $P_k \in P_k$ .

If e is a bridge, the following relation exists between the characteristic polynomials of G, G-(E) and G-E.

Theorem 1.

(2) 
$$\Phi(G) = \Phi(G - (E)) - \Phi(G - E).$$

Formula (2) has been first used by Coulson and Longuet-Higgins [1], but without proof. In chemical [2] and mathematical literature [3,4] the proofs of Theorem 1 have been given independently. It is worth mentioning that (2) is of some importance in theoretical chemistry (e.g. see [5]).

Since all edges of a tree (or more general of a forest) are bridges, we have

Corollary 1.1. Eq. (2) applies to an arbitrary edge of a tree.

If q is a vertex of degree one, adjacent to the vertex p, the application Theorem 1. gives

Corollary 1.2.

$$\Phi(G) = \lambda \Phi(G-q) = \Phi(G-p-q).$$

In particular, for a path  $P_n$  we have,

(3) 
$$\Phi(P_n) = \lambda \Phi(P_{n-1}) - \Phi(P_{n-2}).$$

In the present paper we offer generalizations of both (2) and (3).

Theorem 2. If  $G \in C_k$ ,

(4) 
$$\Phi(G) = \Phi(G - (\overrightarrow{C}_k)) - \Phi(G - \overrightarrow{C}_k).$$

Proof. According to a theorem of Sachs [6], the coefficient  $a_i(G)$  of the characteristic polynomial (1) can be calculated from the equation

(5) 
$$a_i(G) = \sum_{\overrightarrow{L} \in L_i(G)} (-1)^{c(\overrightarrow{L})}$$

where the summation goes over the set  $L_i(G)$  of all linear digraphs  $\overrightarrow{L}$  with i vertices, which are contained as subgraphs in G. Now, from the definition of the class  $C_k$  it follows that the vertices belonging to  $\overrightarrow{C}_k$  appear in a linear subgraph of G only if the cycle  $\overrightarrow{C}_k$  is a component of this linear subgraph. Let us, therefore, divide the set  $L_i(G)$  into two subsets  $L_{i1}(G)$  and  $L_{i2}(G)$ , where  $\overrightarrow{L} \in L_{i1}(G)$  if  $\overrightarrow{C}_k$  is a component of  $\overrightarrow{L}$  and  $\overrightarrow{L} \in L_{i2}(G)$  if  $\overrightarrow{C}_k$  is not a component of  $\overrightarrow{L}$ . But then  $L_{i2}(G) = L_i(G - (\overrightarrow{C}_k))$ . Moreover, there is a one-to-one correspondence between the elements of  $L_{i1}(G)$  and  $L_{i-k}(G - \overrightarrow{C}_k)$ . Namely, if  $\overrightarrow{L} \in L_{i-k}(G - \overrightarrow{C}_k)$ , then  $\overrightarrow{L} \oplus \overrightarrow{C}_k \in L_{i1}(G)$ . Substituting these relations back into eq. (5) we have

$$\begin{split} a_i(G) &= \sum_{\vec{L} \in L_i(G - (\vec{C}_k))} (-1)^{c(L)} + \sum_{\vec{L} \in L_{i-k}(G - \vec{C}_k)} (-1)^{c(L)+1} = \\ &= a_i(G - (\vec{C}_k)) - a_{i-k}(G - \vec{C}_k). \end{split}$$

Theorem 2 follows now immediately from (1).

Corollary 2.1. For k=2, Theorem 2 becomes Theorem 1. For k=1, namely if G has a loop, say on the vertex p, we have

$$\Phi(G) = \Phi(G^{\circ}) - \Phi(G - p)$$

with  $G^{\circ}$  being the digraph obtained after the deletion of the loop from the vertex p of G.

Corollary 2.2. If two digraphs  $G_1$  and  $G_2$  from the class  $C_k$  fulfill the relations  $\Phi(G_1 - (\vec{C_k})) = \Phi(G_2 - (\vec{C_k}))$  and  $\Phi(G_1 - \vec{C_k}) = \Phi(G_2 - \vec{C_k})$ , they are isospectral.

As a consequence of this corollary, one is able to construct numerous multiplets of isospectral nonisomorphic digraphs. For example, the simplest pair of isospectral digraphs of this kind belongs to  $C_4$ . One should note, however, that the finding of isospectral digraphs presents no serious problem [3, 7, 8].

(H<sub>1</sub>) (H<sub>1</sub>) (H<sub>1</sub>) (H<sub>2</sub>) (H<sub>3</sub>) (H<sub>4</sub>) (H<sub>4</sub>) (H<sub>4</sub>) (H<sub>5</sub>) (H

Fig. 3

As it is well known [9], the requirement that every two vertices of a graph are joined by a unique path can be taken as the definition of a tree. Let us extend this definition to digraphs. A ditree is a digraph with the property that every two vertices are joined by a unique directed path.

It is easily seen that a ditree is composed entirely from (directed) cycles. Two cycles  $\overrightarrow{C}_a$  and  $\overrightarrow{C}_b$  in a ditree are either disjoint or have exactly one common vertex. Therefore, every cycle of length k contained in a ditree fulfils the requirements for the class  $C_k$ , and analogously to Corollary 1.1 we have

Corollary 2.3. Eq. (4) applies to an arbitrary cycle of a ditree.

Let us consider now a digraph  $G_k \in P_k$ . According to the definition of the class  $P_k$ ,  $G_k$  contains a sequence of vertices  $v_1, v_2, \ldots, v_k$  such that the vertices  $v_i$  and  $v_{i+1}$  are joined by a bridge  $e_i$   $(i=1,\ldots,k-1)$ . By definition, the digraph  $G_{k-1} \in P_{k-1}$  is obtained from  $G_k$  by deleting the vertex  $v_i$  and joining the vertices  $v_{i-1}$  and  $v_{i+1}$  by a new edge.

We will show now that the validity of (3) is much wider and is not restricted to digraphs with a vertex of degree one.

Theorem 3. For all  $G_k \in P_k$ ,

(6) 
$$\Phi(G_k) = \lambda \Phi(G_{k-1}) - \Phi(G_{k-2}).$$

Proof. Let  $G_k - (E_i) = Q_i \oplus R_{k-i}$ , where  $Q_i$  and  $R_{k-i}$  are digraphs obtained by joining of the end vertex of  $P_{i-1}$  to an arbitrary digraph  $H_1$  and of  $P_{k-i-1}$  to an arbitrary digraph  $H_2$ , respectively. Then it is also  $G_k - E_i = Q_{i-1} \oplus R_{k-i-1}$ , and by Theorem 1,

$$\Phi\left(G_{k}\right) = \Phi\left(Q_{i}\right)\Phi\left(R_{k-i}\right) - \Phi\left(Q_{i-1}\right)\left(\Phi\left(R_{k-i-1}\right)\right).$$

Besides, since  $R_i$  contains a vertex of degree one,

$$\Phi(R_{k-i}) = \lambda \Phi(R_{k-i-1}) - \Phi(R_{k-i-2}).$$

An analogous relation can be written also for  $\Phi(R_{k-i-1})$ . After appropriate transformations we get,

$$\Phi(G_k) = \lambda \left[ \Phi(Q_i) \Phi(R_{k-i-1}) - \Phi(Q_{i-1}) \Phi(R_{k-i-2}) \right] - \left[ \Phi(Q_i) \Phi(R_{k-i-2}) - \Phi(Q_{i-1}) \Phi(R_{k-i-3}) \right]$$

which immediately yields (6).

Corollary 3.1.

$$\Phi\left(G_{k}\right) = \Phi\left(G_{2}\right)\Phi\left(P_{k-2}\right) - \Phi\left(G_{1}\right)\Phi\left(P_{k-3}\right).$$

Proof. From (6) it follows straightforwardly that

$$\Phi(G_k) = \alpha \left[ \frac{\lambda + \sqrt{\lambda^2 - 4}}{2} \right]^k + \beta \left[ \frac{\lambda - \sqrt{\lambda^2 - 4}}{2} \right]^k$$

where  $\alpha$  and  $\beta$  are to be determined from the knowledge of, say,  $\Phi(G_1)$  and  $\Phi(G_2)$ . Substituting  $\lambda = 2 \cos t$ , one obtains

$$\Phi(G_k) = \alpha \exp(ikt) + \beta \exp(-ikt)$$

which yields

$$\Phi(G_k) = \Phi(G_2) \cdot \frac{\sin((k-1)t)}{\sin t} - \Phi(G_1) \cdot \frac{\sin((k-2)t)}{\sin t}.$$

If we set  $G_k = P_k$ ,  $\Phi(P_1) = \lambda$ ,  $\Phi(P_2) = \lambda^2 - 1$ , we obtain  $\Phi(P_k) = \frac{\sin(k + 1)t}{\sin t}$ , from which the Corollary 3.1 follows straightforwardly.

Corollary 3.2. The characteristic polynomials of the graphs  $G_1, \ldots, G_5$  (see Fig. 4) are given by

$$\Phi(G_1) = \frac{\cos[(2k+1)t/2]}{\cos(t/2)},$$

$$\Phi(G_2) = 2(\cos t - 1)\frac{\sin(kt)}{\sin t},$$

$$\Phi(G_3) = 4\cos t\cos(k+1)t,$$

$$\Phi(G_4) = -8\cos t\sin(t/2)\sin[(2k+1)t/2],$$

$$\Phi(G_5) = 16\cos^2 t(\cos^2 t - 1)\frac{\sin(k+1)t}{\sin t},$$

where  $\lambda = 2 \cos t$ .

Fig. 4

From these expressions the spectra of  $G_1, \ldots, G_5$  can be deduced without difficulty. The spectra of  $G_3$  and  $G_5$  have been obtained earlier [10].

## REFERENCES

- [1] C. A. Coulson, H. C. Longuet-Higgins, The electronic structure of conjugated systems. V. The interaction of two conjugated systems, Proc. Roy. Soc. (London) A 195 (1948) 188-197.
- [2] E. Heilbronner, Das Kompositions-Prinzip, Helv. Chim. Acta 36. (1953) 170-188.
- [3] F. Harary, C. King, A. Mowshowitz, R. C. Read, Cospectral graphs and digraphs, Bull. London Math. Soc. 3 (1971) 321—328.

- [4] L. Lovász, J. Pelikán, On eigenvalues of trees, Periodica Math. Hung. 3 (1973) 175-182.
- [5] T. Živković, N. Trinajstić, M. Randić, On conjugated molecules with identical topological spectra, Mol. Phys. 30 (1975) 517-532.
- [6] H. Sachs, Beziehungen zwischen den in einem Graphen enthaltenen Kreisen und seinem characteristischen Polynom, Publ. Math. (Debrecen) 11 (1963) 119—134.
- [7] V. Krishnamoorthy, K. R. Parthasarathy, A note on nonisomorphic cospectral digraphs, J. Comb. Theory (B) 17 (1974) 39-40.
- [8] V. Krishnamoorthy, K. R. Parthasarathy, Cospectral graphs and digraphs with given automorphism group, J. Comb. Theory (B) 19 (1975) 204—214.
  - [9] F. Harary, Graph theory, Addison-Wesley, 1969, p. 32.
- [10] D. M. Cvetković, I. Gutman, On spectral structure of graphs having the maximal eigenvalue not greater than two, Publ. Inst. Math. (Beograd) 18 (32) (1975) 39-45.