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Introduction.

An operator T in Hilbert space H is called a (unilateral) weighted shift
(abbreviated: w.s.) iff

Te,=a,e,,, (n=0,1,2,...),

where {e,}¢ is an orthonormal basis in H and {«,}; a bounded sequence of
positive numbers. In the case a,=1, n=0,1,2,..., T is called a shift and
denoted by S.

We will say that T belongs to the class E (to the class F) iff every
nontrivial part of T (i.e. restriction to a nonzero invariant subspace for T) is
unitarily equivalent (similar) to a w.s.

One can pose the problem of the description of these classes. According
to the classical Beurling’s result [1], S€ E. In Section I we will show (Theorem 1.)
that, if

x 1
) I=lim inf (&g, - - - o, )" = lim inf (w;)? >0 (wy=1),
then the class E consists of w. shifts for which all «'s, except «,, are equal.
Halmos has asked in [2], Problem 2, whether every w. s. T belongs to the class F.
Gellar, [3], has showed that there exists w. s. outside of F. Theorem 2.in Section II
of this paper provides a further information about the class (again under
assumption of (1)): if TEF, then a part of T is similar to T itself.

Section I. Lemma 1. If an isometry A realizes the unitary equivalence
of a part TIM, of a w.s. T to some w.s. R, Re,=B,e,,,, i.e. AM=H and
T/M = A-'RA, and if Pe,#0 (where P is the projector from H to M), then the
vector A~ le, is a scalar multiple of Pe,.

Proof. Since 4 is an isometry, the sequénce
0) {T"4-1ey= A~ Rne))y

is orthogonal and complete in M. The assertion of the Lemma 1. now follows
from

eLT"4 e, n=1,2,....
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Theorem 1. Let T be a w.s. and let (1) hold. Then, TEE iff

3 =0 for i,j=1,2,....
Proof. Let TCE. For |ai<l, the vector
-] )\n
v=S""¢
ozw "

n

is an eigenvector for T*. The subspace M =v. is invariant for 7. If A£0, then
Pey#0. From e,— Pe, | M, it follows that e,— Pe,—+yv, where,

o !7\ 2n
Y.OZ%_=]_.

n

By Lemma 1. and by orthogonality of the sequence (2), the sequence
{77 Pey}

is orthogonal, too. By a routine computation, we obtain therefore

2ol
0=(TPey, T Peyy=y*2 3™ 205 [ om,
giving " '
4 S “12—“24‘1 2n-2
s n-2—
“) 12 W A [2r-2=0.

for all A, 0<|{2|<!] Hence, if {A|— 0, it follows that o>~ ,2=0. Similarly,
by putting «,* —,2= 0 in (4), we can obtain «,>—«,>= 0, and so on, thus (3) holds.

Assume now that (3) holds. This. condition, evidently, can be replaced by
39 o,=1, n=1,2,...,

without any loss of generality. Let Ho=eol. Because of (3’), T/g, is a shift. By
[1], if M, is an invariant subspace for T/H,, then there exists an isometry 4 ‘
from M, to H,, for which

(5 T/M,= A~1(T/H,) A.

Let M be an arbitrary invariant subspace for T. If M Le,, then MC H,,
and the assertion holds. If M is not orthogonal to e,, then M,=M N\ H, is an
invariant subspace for 7/H,; this means that there exists an isometry 4 for
which (5) is satisfied. Hence, the sequence

1 1 *
(6) {A—l e,,=—~A‘1T”“1e1=—T””1A‘1el}

OCO OCO 1

is an orthonormal basis in M. Let Pe, be the projection of e, to M. We will
show that, after addition of Pe, to the sequence (6), the sequence becomes
an orthogonal basis (6°) in M. It will suffice to show that x& M and x_L M, imply
Tx to be a scalar multiple of 4-1e,. This means, because of ker T'=0, that
the subspace MOM, is one-dimensional. But, if x&M and x 1 M, then
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Tx=Sx+(x, e,y (¢, — 1) ¢, L SM,= TM, and TxEM,, which, together with the
completeness of the sequence (6), implies the colinearity of Tx and A~'e,. Thus,
the sequence (6°) is complete in M.

In the system
N {T" Pe,}o

each vector, except Pe,, is a scalar multiple of the corresponding vector in (6).
Therefore the system (7) is orthogonal and complete in M. To complete the
proof, it is only necessary to normalize the sequence (7) and to obtain in such
a way an o.n. basis on which 7/, acts as a w.s.

Without (1), Theorem 1. does not always hold. There exist examples of
w.s. in the class E, for which neither (1) nor (2) is satisfied [4].

Section II. We will use the following two lemmas for proving the
Theorem 2. Lemma 3. appears to be of interest by itself.

Lemma 2. Let a (non-trivial) part, T/, of a w.s. T be similar to some
w.s. R, Re,=P,e,,,, and let P, denote the projector to the subspace T"M
(n=0,1,2,...). (By T"M we denote the closed subspace in M generated by
T"M). If P,e,#0, then

a) the sequence
) {P,e,o is orthogonal;

b) the sequence {P, e} is complete in ker (4[p)*"*Y for n=0,1,2, ...;

c) the sequence (8) is complete in M.

Proof. a) Orthogonality follows from P,e, | T™ M (because of e, | T™M)
for m>n and from Pe, &T™ M.

b) Since the sequence {e} is complete in ker R*” and since the dimension

of the kernel of an operator is a similarity invariant, it follows that
dim (ker (7/,)*** Y =n-+1, and the statement holds.

¢) Let x&M and x1 P,e,, n=0,1,2,,.... It follows from x_| Pe, that
xle, and xCAM (by b). Then xS AM and x L P, ¢, imply xle, (and x& A°M),
and so forth, i.e. x_Le, for n=0,1,2,...; thus x=0.

Lemma 3. Take for ws. T and R and for the subspace M the same
assumptions as in Lemma 2. Denote by k the smallest index for which P,e,#0.
Then the sequence

(9) {Qn= e 2T 2T 7 }w
Bo Bl' * 'Bn“Pn+lek+n+lH 0

is bounded away from O and from .

Proof. Explicit proof of the lemma is restricted to the case k=0.
(If k>0, T can be replaced by T°:T’e,=o,,€,,,, Which is unitarily equi-
valent to T).
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Let an invertible operator A (acting from H to M) realize the similarity
of R and 7/,,, ie. R=A~ 1(T/ um) A. Put

,,_——~ (n=0,1,2,...).
- | Pye,l
Since
A*- lR* (T/ )*A* 1
we have
(10) Bn<A*~len’f;z>=<A*th* en+1’f;1>=

= <(T/M)* A*—l en+1’f;z>= <A*_1 en+1 ’ T.f;z>

Relation e,,,€ker R*"*2 implies A*-le,,  cker(7/,)*"*2 By Lemma 2. b),
A*- 1e,,+1 is a linear combination of {f}”“. But Tf,cT"*1M and Tf,lf,

i=0,1,2,...,n so that the last inner product in (10) is equal to
. A* ey 15 fusrd Fosts T
Since ‘ ,
1 1
<f;,+1’ f;z> < n+1? f;1> M<T*en+1’f;,>=
” n+1 n+l “ HPn+1en+1H .
[ Pye,]
M<n’ﬂt> *——'_< n n’f>h _____n
HPnJrl n+1H H n+l n+1“ “ ntl1 n+11|

the relation (10) implies

b, Arte, 1y =g I Patal

"Ip ”< * e, s farr)s
n+l1 +1
ie o

<A*..1en+1’ n+1>= Banul' i 'BO HPn+len+1H<A*_1eo’f;)>.

Gy &y 10 0% ”PoeoH

Hence we conclude directly that the sequence (9) is bounded away from O:
~1 - [ Poe |l
= |{(A* e, ., f, 00 <
0= A* ey, fre) <A*-1eo,fo>{
[ Pye |l
[KA*~ e, f3))]

In the similar way, starting with 4R=("/,,) 4, we obtain

Bulde, .y frir) = (ARe,, f, > =(TAe, f,.,>=

<[l 4*-1 (n=0,1,2,..)).

= (Tdey 0y,) = (e T,y
I n+1 n+1|' ” n+i n+1“
o, [P,e,l
~ (e, ¢, Putel e, )

H n+l n+1“ “ n+i n+1!|
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and

Aty for > = a, g0y || Pyeyl] Ae,, 1)
< é f;t > Bnﬁn—l"'ﬁo HPn+1en+1H< ‘ f>

Thus, the sequence (9) is bounded:

an |<Aen+1’ f;z+1>l H

1 1
<[ 4] -
Py, || < Aey, i) | Py eyl [KAey £

Theorem 2. Suppose that for a w.s. T in F (1) holds. Then there exists
a part of T similar to T itself.

Proof. Let 0<|a|<],

-} n

A
v=2—en (v¢e0)

oW,

and M =vl. We prove that for such an invariant subspace M the sequence
{llP,e,|}¢ is bounded away from 0.

As in the proof of Theorem 1., we have ¢,—Pje,=y-v, where y=

vl?
Thus HPoeo[|2=l—H B Since
v
Y )\Zn )\2 7\2
[1v1[2:21—2;~>1+‘—1~>1+#,
0 Wh oy | T|?
it follows
| 2 AP
| Poeg P>
| TP+
Put now
oo )\n
v=e,+S———e,,;
1 1 ?“1"‘“” +1

It is quite easy to see that x TM is equivalent to x L v, A x L e, Namely, it follows

1
from x | v, and x L e,, because of v=—v,+e, that x&EM, and xLPje, too.

. . . . 0 . . .
Since 7/,, is similar to some w.s. R, the subspace MOTM is one-dimensional,
thus x&TM. In the same way as in the first step, we can obtain now

AP AL
a2 TP+

|| e ||>
and

2
(11) A>) | Pye,p>—Ar a0 1,2,
I TIP+{ap

If {B,}o are weights of the w.s. R, to which 7/,, is similar, then, by
Lemma 3. and by (11), the sequence

{ﬁopf . 'ﬁn}o
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is bounded away from 0 and o, which implies that R is similar to T ([5],
Problem 76.). That is, 7/, is similar to T.
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