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Introduction

In a recent paper Ciri¢ [1] proved some fixed point theorem when the
mapping T of a metric space (M,d) satisfies the following inequality

(1) min{d(Tx, Ty), d (%, Tx), (y, Ty)} — min {d (x, Ty), d (», T)) < d (x, y)

for x,y&M and for some O0<a<1.

The chief aim of the present paper is to study the above mapping in
spaces of type L of Fréchet, which we shall call separated L-spaces. A similar
result in non-separated L-spaces will also be stated.

1. Some Definitions

Definition 1. Let N denote the set of all non-negative integers. A pair
(M,~>) ofa set M and a subset — of the set MY x M is called an L-space if the
following conditions are satisfied:

(L-1) If x,=x & M for all n € N, then ({x,}ien, X) € —

(L2 If ({X,Juens X) € =, then ({xn}ien, %) € —

for every subsequence {xm}icn Of {X,}ncn. In what follows, we shall write
{X,Jnen—x or x,—x instead of ({x}sen,Xx) E —, and read {x,}.en converges
to x.

Definition 2. Let (M,—) be an L-space. It is said to be separated
if each sequence in M converges to atmost one point of M.

Definition 3. Let d be a non-negative extended real valued function
on MxM: 0<d(x, )< oo for all x,yc M. The L-space (M,—) is said to be

d-complete if each sequence {x,}.en in M with 2 d(x,. 1 X,)<< oo converges to
0

n=

atmost one point of M.



6 J. Achari

2. Main theorems

Theorem 1. Let (M,—) be a separated L-space which is d-complete
Jor a non-negative extended real valued function d on Mx M and T be a conti-
nuous mapping of M into itself satisfying the following conditions Jor some a, B
with 0<a<1,0<f<<o0:

2) min {d(Tx, Ty), d(x, Tx),d(y, Ty)} —min {d(x, Ty),d(y, Tx)}<ad(x,y)

for x, y& M with d(x,y)<p |

3) d(Th,b)<B for some b M.

Then T has a fixed point and the sequence {T;‘ b}ne ~ converges to the fixed point.

Proof. Now
min {d(T"+1p, T"b), d (Trb, Tn+1b),d(T"b, T*1 b)} — min {d(T"1b, Tr+1p),
d(T"b, T"b)}<ad (T b, T"+1b)

ie.
d(T"1b, T"by<ad(T" 1b, T"b)

By induction we get

d(T"+1b, T"b)<a" d(Tb, b)

for every nE&N and so we have . d(T"*1b, T"b)< . Hence the d-complete-
0

N . n= .
ness of the space implies that the sequence {T"b},cn converges to some uc M.
So, by the continuity of 7, there is a subsequence {77 b}y of {T"b},cn such
that 7(T"b)— Tu. But then since {T(T"b)}ien is a subsequence of {T"b},cn,
we have T(T"b)—u. Therefore Tu—u. This completes the proof of the Thecrem.

Theorem 2. Let (M,—) be an L-space which is d-complete for a conti-
nuous non-negative extended real valued function d on the product space M x M
with the property that d(x,y)=0 implies x = y. If T be a continuous mapping of
M into itself satisfying conditions (2) and (3) of Theorem 1 for some «,B with
O0<a<l, 0<PBL oo, then T has a fixed point.

Proof. By induction (as in theorem 1)
4) d(T"+1b, T"b)<a”d(Tb, b)
for every n<N. Hence she same argument employed in the proof of Theo-
rem 1 yields that the sequence {77b},cn converges to some uw<M and that

T (T™® b) —Tu for some subsequence {77® p} of the sequence {T"b},cn. There-
fore the continuity of 7 implies that

d (T (T"&) B), T"€) by —d (u, Tu)
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for some subsequence {T"*};cy of {T"¥ b}.cn. However (4) shows that
d(T (T%) b), T"*D b)—>0.

Hence d(u, Tu)=0 and thus we have Tu=u.
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