NON-UNIQUE FIXED POINTS IN L-SPACES

J. Achari

(Received December 15, 1976)

Introduction

In a recent paper Ćirić [1] proved some fixed point theorem when the mapping T of a metric space (M,d) satisfies the following inequality

(1)
$$\min \{d(Tx, Ty), d(x, Tx), (y, Ty)\} - \min \{d(x, Ty), d(y, Tx)\}\} \le \alpha d(x, y)$$

for $x, y \in M$ and for some $0 < \alpha < 1$.

The chief aim of the present paper is to study the above mapping in spaces of type L of Fréchet, which we shall call separated L-spaces. A similar result in non-separated L-spaces will also be stated.

1. Some Definitions

Definition 1. Let N denote the set of all non-negative integers. A pair (M, \rightarrow) of a set M and a subset \rightarrow of the set $M^N \times M$ is called an L-space if the following conditions are satisfied:

(L-1) If
$$x_n = x \in M$$
 for all $n \in N$, then $(\{x_n\}_{n \in N}, x) \in A$

(L-2 If
$$(\{x_n\}_{n\in\mathbb{N}}, x) \in \rightarrow$$
, then $(\{x_{n_i}\}_{i\in\mathbb{N}}, x) \in \rightarrow$

for every subsequence $\{x_{n_i}\}_{i\in N}$ of $\{x_n\}_{n\in N}$. In what follows, we shall write $\{x_n\}_{n\in N}\to x$ or $x_n\to x$ instead of $(\{x_n\}_{n\in N},x)\in \to$, and read $\{x_n\}_{n\in N}$ converges to x.

Definition 2. Let (M, \rightarrow) be an L-space. It is said to be separated if each sequence in M converges to at most one point of M.

Definition 3. Let d be a non-negative extended real valued function on $M \times M$: $0 \le d(x, y) \le \infty$ for all $x, y \in M$. The L-space (M, \to) is said to be d-complete if each sequence $\{x_n\}_{n \in N}$ in M with $\sum_{n=0}^{\infty} d(x_{n+1}, x_n) < \infty$ converges to atmost one point of M.

2. Main theorems

Theorem 1. Let (M, \rightarrow) be a separated L-space which is d-complete for a non-negative extended real valued function d on $M \times M$ and T be a continuous mapping of M into itself satisfying the following conditions for some α , β with $0 < \alpha < 1, 0 < \beta \leqslant \infty$:

(2)
$$\min \{d(Tx, Ty), d(x, Tx), d(y, Ty)\} - \min \{d(x, Ty), d(y, Tx)\} \le \alpha d(x, y)$$

for $x, y \in M$ with $d(x, y) < \beta$

(3)
$$d(Tb,b) < \beta \text{ for some } b \in M.$$

Then T has a fixed point and the sequence $\{T^n b\}_{n \in \mathbb{N}}$ converges to the fixed point.

Proof. Now

$$\min\{d(T^{n+1}b, T^nb), d(T^nb, T^{n+1}b), d(T^nb, T^{n-1}b)\} - \min\{d(T^{n-1}b, T^{n+1}b), d(T^nb, T^{n-1}b)\}$$

$$d(T^n b, T^n b) \} \leqslant \alpha d(T^{n-1} b, T^{n+1} b)$$

i.e.

$$d(T^{n+1}b, T^nb) \leqslant \alpha d(T^{n-1}b, T^nb)$$

By induction we get

$$d(T^{n+1}b, T^nb) \leqslant \alpha^n d(Tb, b)$$

for every $n \in N$ and so we have $\sum_{n=0}^{\infty} d(T^{n+1}b, T^nb) < \infty$. Hence the d-completeness of the space implies that the sequence $\{T^nb\}_{n \in N}$ converges to some $u \in M$. So, by the continuity of T, there is a subsequence $\{T^{ni}b\}_{i \in N}$ of $\{T^nb\}_{n \in N}$ such that $T(T^{n_i}b) \to Tu$. But then since $\{T(T^{n_i}b)\}_{i \in N}$ is a subsequence of $\{T^nb\}_{n \in N}$, we have $T(T^{n_i}b) \to u$. Therefore Tu = u. This completes the proof of the Theorem.

Theorem 2. Let (M, \to) be an L-space which is d-complete for a continuous non-negative extended real valued function d on the product space $M \times M$ with the property that d(x,y)=0 implies x=y. If T be a continuous mapping of M into itself satisfying conditions (2) and (3) of Theorem 1 for some α, β with $0 < \alpha < 1, 0 < \beta \leqslant \infty$, then T has a fixed point.

Proof. By induction (as in theorem 1)

$$d(T^{n+1}b, T^n b) \leqslant \alpha^n d(Tb, b)$$

for every $n \in \mathbb{N}$. Hence she same argument employed in the proof of Theorem 1 yields that the sequence $\{T^nb\}_{n\in\mathbb{N}}$ converges to some $u\in M$ and that $T(T^{n(k)}b) \to Tu$ for some subsequence $\{T^{n(k)}b\}$ of the sequence $\{T^nb\}_{n\in\mathbb{N}}$. Therefore the continuity of T implies that

$$d(T(T^{n(k_i)}b), T^{n(k_i)}b) \rightarrow d(u, Tu)$$

for some subsequence $\{T^{n(k_i)}\}_{i\in N}$ of $\{T^{n(k)}b\}_{k\in N}$. However (4) shows that $d(T(T^{n(k_i)}b), T^{n(k_i)}b) \rightarrow 0$.

Hence d(u, Tu) = 0 and thus we have Tu = u.

Acknowledgement. The author expresses his sincere thanks to Prof. S. Kasahara for his valuable support.

REFERENCE

[1] Cirić, Lj. B., On some maps with a non-unique fixed point, Publ. Inst. Math. 17 (31), 52-58 (1974).

[2] Kasahara, S., On some generalizations of the Banach contraction theorem, Math Seminar Notes 13 (1975), 1—10.

Dept. of Mathematics Indian Institute of Technology Kharagpur, India