ON SOME FUNCTIONAL-DIFFERENTIAL EQUATIONS

Stefan Czerwik

(Received November 6, 1975)

1. In the present paper we consider the sequences of following functional-differential equations

(1)
$$y'(x) = F_n(x, y(x), y[f(x)]), \qquad n = 0, 1, ...$$

and

(2)
$$y'(x) = F_n(x, y(x), y[f_n(x)]), \quad n = 0, 1, ...$$

We shall prove some theorems about the existence, uniqueness and continuous dependence on the given functions of solutions of these equations. The corresponding problem for the equations

(3)
$$y'(x) = F_n(x, y(x)), \qquad n = 0, 1, \dots$$

has been investigated in [2].

2. Let R be the space of real numbers and let

(4)
$$Y = \{(x, y, z) : |x - x_0| \leq a, |y - y_0| \leq b, |z - z_0| \leq b, a, b > 0\},$$

$$x, y, z, x_0, y_0, z_0, a, b \in R.$$

We assume the following hypotheses:

(i) The functions $F_n: Y \to R$, $n = 0, 1, \ldots$, are continuous on Y. There exist positive number M and bounded sequences of positive numbers $\{L_n\}$, $\{K_n\}$, $n = 0, 1, \ldots$, such that

(5)
$$|F_n(x, y, z)| \leq M \text{ for all } (x, y, z) \in Y, \qquad n = 0, 1, \ldots$$

and

(6)
$$|F_n(x, y, z) - F_n(x, y_1, z_1,)| \le L_n |y_1 - y| + K_n |z_1 - z|$$
 for all $(x, y, z), (x, y_1, z_1) \in Y, n = 0, 1, \dots$

(ii) The function $f: I \to R$ is continuous on I and $f(x) \leqslant x$ for $x \in I$, where $I = \langle x_0 - a, x_0 + a \rangle$.

(iii) The sequence $\{F_n\}_{n=1}^{\infty}$ converges pointwise on Y to F_0 . The following result is known.

Theorem 1. (Nadler [2]). Let (X, d) be a locally compact metric space, let $T_n: X \to X$ be a contraction mapping with fixed point a_n for n = 0, 1, ... If the sequence $\{T_n\}_{n=1}^{\infty}$ converges pointwise to T_0 , then the sequence $\{a_n\}_{n=1}^{\infty}$ converges to a_0 .

Now we shall prove

Theorem 2. Let hypoteses (i), (ii), (iii) be fulfilled. Then there exists $0 < h \le a$ such that on the interval $J = \langle x_0 - h, x_0 + h \rangle$ the initial value problem

(7)
$$y'(x) = F_n(x, y(x), y[f(x)]), \quad x \in J$$
$$y(x) = \varphi_0(x), \quad x \in \langle \alpha, x_0 - h \rangle$$

where $\alpha = \min_{x \in J} f(x)$ and $\varphi_0 : \langle \alpha, x_0 - h \rangle \rightarrow \langle y_0 - b, y_0 + b \rangle$ is given continuous function, has for every $n = 0, 1, \ldots$ exactly one solution y_n given as the limit of successive approximations. Moreover, the sequence $\{y_n\}_{n=1}^{\infty}$ converges uniformly on J to y_0 .

Remark. If $\alpha > x_0 - h$, we assume $\langle \alpha, x_0 - h \rangle = \{x_0 - h\}$.

Proof. From the boundedness of the sequences $\{L_n\}_{n=0}^{\infty}$ and $\{K_n\}_{n=0}^{\infty}$ there exists positive number $h \leq a$ such that

(8)
$$0 < 2h(L_n + K_n) < 1, \qquad n = 0, 1, \ldots$$

and such that $Mh \leqslant b$. Let G be a space of these functions $\varphi: J \to \langle y_0 - b, y_0 + b \rangle$ which fulfil a Lipschitz condition with Lipschitz constant less than or equal to M and such that $\varphi(x_0 - h) = \varphi_0(x_0 - h)$. Let X be a space of all functions ψ defined as follows

$$\psi(x) = \begin{cases} \varphi(x), & x \in J, \\ \varphi_{u}(x), & x \in \langle \alpha, x_{0} - h \rangle, \end{cases}$$

where $\varphi \in G$. Then X and G with the supremum metric d are compact metric spaces.

The problem (7) is equivalent with the equation

$$y(x) = \varphi_0(x_0 - h) + \int_{x_0 - h}^x F_n(s, y(s), y[f(s)]) ds, \qquad x \in J,$$

 $y(x) = \varphi_0(x), \qquad x \in \langle \alpha, x_0 - h \rangle.$

Now for each $n=0, 1, \ldots,$ and $\psi \in X$, we define $T_n(\psi)$ at each $x \in J \cup \cup \langle \alpha, x_0 - h \rangle$ by the formula

(9)
$$T_{n}(\psi)(x) = \varphi_{0}(x_{0} - h) + \int_{x_{0} - h}^{x} F_{n}(s, \psi(s), \psi(f(s))) ds, \qquad x \in J,$$

$$T_{n}(\psi)(x) = \varphi_{0}(x), \qquad x \in \langle \alpha, x_{0} - h \rangle.$$

From (i), (ii) it is easy to verify that for each $n=0, 1, \ldots, T_n$ maps X into itself. We also have from (9), (i) for $\psi_1, \psi_2 \in X$ and $n=0, 1, \ldots$

$$d[T_{n}(\psi_{1}), T_{n}(\psi_{2})] =$$

$$= \sup_{x \in J \cup \langle \alpha, x_{0} - h \rangle} \left| \int_{x_{0} - h}^{x} \left[F_{n}(s, \psi_{1}(s), \psi_{1}[f(s)]) - F_{n}(s, \psi_{2}(s), \psi_{2}[f(s)]) \right] ds \right|$$

$$\leq 2h (L_{n} + K_{n}) \sup_{x \in J} \left| \psi_{1}(x) - \psi_{2}(x) \right| = 2h (L_{n} + K_{n}) d(\psi_{1}, \psi_{2})$$

which means, in view of (8), that T_n , $n=0, 1, \ldots$, is a contraction mapping from X into X with Lipschitz constant $2h(L_n+K_n)<1$.

From the known Banach's fixed-point principle for contraction maps [1] there exists exactly one fixed point $\psi \in X$ of transformation (9), i.e. exactly one solution $\psi \in X$ of equation (7) given as the limit of successive approximations.

Now we shall prove that $\psi_n \to \psi_0$, uniformly on J as $n \to \infty$. From (i), (iii) we have $F_n \to F_0$ pointwise and $|F_n| \leqslant M$ for $n = 1, 2, \ldots$ Consequently the Lebesgue bounded convergence theorem ([3], p. 295) implies that

$$\int\limits_{x_{0}-h}^{x}F_{n}\left(s,\,\psi\left(s\right),\,\psi\left[f(s)\right]\right)ds\to\int\limits_{x_{0}-h}^{x}F_{0}\left(s,\,\psi\left(s\right),\,\psi\left[f(s)\right]\right)ds\quad\text{ as }\quad n\to\infty\,,$$

hence $\{T_n(\psi)\}_{n=1}^{\infty}$ converges pointwise on $J \cup \langle \alpha, x_0 - h \rangle$ to T_0 . We also have

$$|T_n(\psi)(x)-T_n(\psi)(z)| \leq M|x-z|, \quad x, z \in J \cup \langle \alpha, x_0-h \rangle,$$

which means that the sequence $\{T_n(\psi)\}_{n=1}^{\infty}$ is equicontinuity on the compact set $J \cup \langle \alpha, x_0 - h \rangle$. This implies (see [3], p. 162) that the sequence $\{T_n(\psi)\}_{n=1}^{\infty}$ converges uniformly on $J \cup \langle \alpha, x_0 - h \rangle$ to T_0 and hence the sequence $\{T_n\}_{n=1}^{\infty}$ converges pointwise on X to T_0 . From Theorem 1, the sequence of unique fixed points of transformations T_n for $n=1, 2, \ldots$, tends to the unique fixed point of T_0 . Since these fixed points are equal the unique solutions of the equations (7), we have $\psi_n \to \psi_0$ uniformly on $J \cup \langle \alpha, x_0 - h \rangle$, which completes the proof.

We shall assume that

(iv) The function $f: I \rightarrow R$ is continuous on I and $f(x) \geqslant x$ for $x \in I$. We have

Theorem 3. Let hypotheses (i), (iii), (iv) be fulfilled. Then there exists $0 < h \le a$ such that on the interval J the initial value problem

(10)
$$y'(x) = F_n(x, y(x), y[f(x)]), \quad x \in J,$$
$$y(x) = \varphi_1(x), \quad x \in \langle x_0 + h, \beta \rangle,$$

where $\beta = \max_{x \in J} f(x)$ and $\varphi_1 : \langle x_0 + h, \beta \rangle \rightarrow \langle y_0 - b, y_0 + b \rangle$ is given continuous function, has for every $n = 0, 1, \ldots$, exactly one solution y_n . Moreover, the sequence $\{y_n\}_{n=1}^{\infty}$ convergences uniformly on J to y_0 .

Proof. Let G_1 be a space of these functions $\varphi: J \to \langle y_0 - b, y_0 + b \rangle$ which fulfil a Lipschitz condition with constant less than or equal to M and fulfilling condition $\varphi(x_0 + h) = \varphi_1(x_0 + h)$. Let X_1 be a space of all functions ψ such that

$$\psi(x) = \begin{cases} \varphi(x), & x \in J, \\ \varphi_1(x), & x \in \langle x_0 + h, \beta \rangle, \end{cases}$$

where $\varphi \in G_1$. We can verify that for $n = 0, 1, \ldots, \psi \in X_1$ the transformation

$$T_n(\psi)(x) = \int_{x_0+h}^x F_n(s, \psi(s), \psi[f(s)]) ds, \qquad x \in J,$$

$$T_n(\psi)(x) = \varphi_n(x), \qquad x \in \langle x, +h, \beta \rangle$$

is a contraction mapping from X_1 into X_1 , As in the proof of Theorem 2, we can show that the sequence $\{T_n\}_{n=1}^{\infty}$ converges pointwise on X_1 to T_0 and from the Theorem 1 we obtain our assertion.

Now we assume the hypothesis.

(v) The function $f: I \rightarrow R$ fulfils the condition

$$|f(x)-x_0| \leqslant |x-x_0|$$
 for $x \in I$

Theorem 4. Let hypotheses (i), (iii), (v) be fulfilled. Then there exists $0 < h \le a$ such that on J the initial value problem

(11)
$$y'(x) = F_n(x, y(x), y[f(x)]) \qquad x \in J, \\ y(x_0) = y_0$$

has for every $n = 0, 1, \ldots$, exactly one solution y_n and the sequence $\{y_n\}_{n=1}$ converges uniformly on J to y_0 .

Proof. We define X_2 as the space of these functions $\varphi\colon J\to \langle y_0-b,\,y_0+b\rangle$ which fulfil a Lipschitz condition with constant less than or equal to M. From (v) follows that if $\varphi\in X_2$ than $\varphi[f(x)]\in \langle y_0-b,\,y_0+b\rangle$ for $x\in J$. For $\varphi\in X_2$ and $n=0,\,1,\,\ldots$ we define the transformation T_n by

$$T_n(\varphi)(x) = y_0 + \int_{x_0}^x F_n(s, \varphi(s), \varphi[f(s)]) ds, \qquad x \in J.$$

We can verify that for each $n=0, 1, \ldots, T_n$ is a contraction mapping from X_2 into X_2 and that the sequence $\{T_n\}_{n=1}^{\infty}$ converges pointwise on X_2 to T_0 . Applying Theorem 1 we complete the proof.

We shall assume

- (vi) The sequence $\{F_n\}_{n=1}^{\infty}$ tends uniformly on Y to F_0 .
- (vii) The functions $f_n: I \to R$, $n = 0, 1, \ldots$, fulfil the condition

$$|f_n(x)-x_0|\leqslant |x-x_0|, \qquad x\in I.$$

Theorem 5. Let hypotheses (i) (vi), (vii) be fulfilled. Then there exists $0 < h \le a$ such that on J the initial value problem

(12)
$$y'(x) = F_n(x, y(x), y[f_n(x)]), \qquad x \in J$$
$$y(x_0) = y_0$$

has for every $n=0, 1, \ldots$, exactly one solution y_n and the sequence $\{y_n\}_{n=1}^{\infty}$ converges uniformly on J to y_0 .

The proof of the above theorem does not differ from that given for Theorem 2 and is therefore omitted.

REFERENCES

- [1] L. A. Liusternik and V. J. Sobolev, Elements of Functional Analysis, New York, 1961.
- [2] S. B. Nadler, Jr., Sequences of contractions and fixed points, Pacific J. Math. 27 (1968), 579—585.
 - [3] R. Sikorski, Funkcje rzeczywiste, t. 1, Warszawa, 1958.

Institute of Mathematics, ul. Bankowa 14 Silesian University, 40-007 Katowice