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0. Abstract.

In this paper we propose some graph theory problems to be considered
in terms of “graph equations*‘ and ’graph inequalities‘. These notions have already
been used in some papers written by the first and the third author and are
now formally defined. Applying a fixed point theorem to graph equations and
graph inequalities we want to point out that such means as fixed point theo-
rem, typical for analysis, work also in the field of discrete mathematics,
although not with so great power, which can be seen from the obtained results
(Theorems 1 and 2).

1. Some basic definitions.

In this paper only finite undirected graphs without loops or multiple
edges are being considered, including also the empty graph 0, i. e. the graph
without vertices (or edges). The set of all such graphs will be denoted by §.

The complement G of a graph G is a graph having the same vertex set
as G and in which two vertices are adjacent if and only if they are not
adjacent in G. Note, that the complement of the empty graph is the empty graph.

The line graph L(G) of a graph is the graph having the edge set of G
as its vertex set and in which two vertices are adjacent if and only if the
corresponding edges are adjacent in G. Note, that the line graph of the totally
disconnected graph or of the empty graph is the empty graph. In other words,
the set ¢ is closed under the operation of taking line graphs while G\{0} is not?.

As usual we have L°(G)=G, while L"(G)=L(L*"'(G)) for any positive
integer n. Further, L-Y(G)={H|H&§, L(H)= G}, while the mcaning of L~"(G)
is now evident.

k
The union G=| j G, is a graph whose vertex set is the union of the
i=1
vertex sets of graphs G,, while two vertices in G are adjacent if and only if
the corresponding vertices are adjacent in at least one of the graphs G,.

1) The advantages of introducing the notion of the empty graph in general, are
discussed in [1].
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By kG we shall denote the union of k copies of the graph G. In parti-
k k
cular, we have 0-G=0 and 6 UG=G. So, we can write L(U Gi)z U L(G).

i=1
For all other definitions and notations on graphs the reader is refer-
red to [2].

i=1

2. The notion of graph equation and inequality.

On the sct of all graphs various operations are decfined. Using those
operations one can form, starting from a finite sequence of graphs G,...,G,
a compound graph denoted by f(G,, ..., G,). The expression f(G,, ..., G,)
could be called the algebraic expression* in variables G,, ..., G,. Now, if we
assume that two graphs are equal, if and only if they are isomorphic (isomor-
phism is, naturally, an equivalence relation), by equating two algebraic expres-
sions having thc same set of variables, we shall get a relation which will be
called a graph equation. In general case it can be written in the form:

€)) f(Gy,...,G)=g(G,, ..., G).
Then, one can pose the problem of solving such an equation, i.e. of
finding all n-tuples (G,, ..., G,) of graphs satisfying (1).

If < denotes a partial order relation in ¢, then

2) (G, ..., G)<g(Gy,...,G)

is called a graph inequality.

For example, the relation “to be an induced subgraph of is a partial
order relation and it will be denoted by C.

Finally let us note that the systems of graph equations or inequalities
can be considered, too.

3. Some examples of graph equations.

We shall now mention somc known results reformulating them according
to our terminology.

The solutions of the equation G=G are self-complementary graphs. It is
known that there are infinitely many such graphs.

The cxistence and uniqueness of the solution of equation L(G)=H,
where H is a given graph was investigated by L. Beineke and H. Whitney.
In [3], L. Bsineke proved that the equation L(G)=H has solutions, if and
only if H does not contain any one of nine graphs from fig. 1 as an induced
subgraph. For the same cquation H. Whitney proved in [4] that if both graphs
G and H (s£0) arz connected, then for cach H, G is unique (if it exists)
except for H=K,, when G could be K, or K, ,.

2 Naturally, a graph equation can be defined more generally, but now we shall not
deal with that,
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Also, we shall only mention that the equation L (G)=H has been treated
in many special cases: for instance, if H belongs to the set of regular graphs,
bipartite graphs and so on.

For the equation T(G)=H, where T(G) is the total graph of a graph G,
the analogous results to the above ones were stated by M. Behzad and H.
Radjavi in [5] and [6].

LS AD S

In [7] D. Cvetkovi¢ and S. Simi¢ have described all graphs H without

triangles satisfying the equation L (G)= H. Notice that the list of forbidden indu-
ced subgraphs for the graph H coincides with the list of complements of the
graphs from fig. 1.

In [8] and [9] V. V. Menon pointed out that, for any n, G(5£0) is the
solution of the equation L"(G)=G, if and only if G is a regular graph of
degree two. Of course, the empty graph is also a solution.

Also the equation L"(G)=G has G=6 as a solution for any n. For n=1
M. Aigner [10] pointed out that the only other solutions are graphs from fig. 2.

OA U<

Fig. 2 Fig. 3

In {11] S. Simi¢ proved that for n=2 the only solutions different from
0 are graphs from fig. 3, while for n>>3 only the cycle of length five and 0
are solutions,

In [12] D. Cvetkovi¢ and S. Simi¢ solved the equations L (G)=T (H)
and L(G)=T (H).

Finally, let us mention that in [13] L. Beineke, in fact, has solved the
system of graph equations L (G,)=H, ZTGZ)=H. A graph H satisfying the above
system is called coderived graph.

4. A fixed point theorem.

Let A4 (see [14] or [15]) throughout this section be a set having the
following properties:

1) A is partially ordered by the relation << and has an element » with
the property that @ <wu holds for every u< A.
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2) If (u)icn is a sequence of elements from A4 such that u,,,<<w, holds
for every i< N, then, it is possible to correspond to that sequence a unique
element u< A (which is denoted by u,u and u is called the limiting value of
(1;)) with the following properties:

a) if u;=u for every i€ N, then u,\u,

b) if u,\u, v xv and u,<v; for all i&N, then u<v,

¢) u remains the same if a finite number of members of (u,);cy are repla-
ced by arbitrary elements trom A.

For a mapping ¢:4—->A4 we shall say that it is nondecreasing, if u<v
(u, v A) implies @ ()<< (v). A mapping ¢ is continuous with respect to mono-
tonic sequences if u,u implies @ (u;) \ ¢ (u).

Let u,, vy A and u,<<v,. The segment [4,, v)] in A is the set of all
elements w& A, such that u,<<w<v,. Also, we shall consider the equation

3 ¢ (¥)=x,

where x¢& A and ¢ is the mapping on A4 already defined. The solution X* S lu,, vl
of equation (3) is maximal on segment [u,,v,], if for every solution
y&luy, v] of the same equation we have y<Cx*,

Now, according to [14] or [15], the following theorem holds.

Theorem A. Let ¢:A— A be a mapping defined on segment A =[z ,%x]C A.
Also, let ¢ be nondecreasing, continuous with respect to monotonic sequences,
o)A and for some b A let ¢(b)<<b. Then the equation ¢ (x)=x has on
the segment [ &, b] the maximal solution m (¢, b). If @ <a<\b and a<¢(a), then
a<<m(e, b).

The proof of the above theorem gives a possibility of the approximate
computing the solutions of equation (3) if we know the solutions of the
corresponding inequality. Namely, the sequences of the type (¢(b))ien converge
to the solution m (o, b).

In some special cases the above theorem can be used in the opposite
sense, namely for finding solutions of inequalities, if the solutions of corre-
sponding equations are known.

First, we shall introduce some notations. For a mapping ¢:A4->4 and
B( A let ¢=1(B) be the inverse image of B, i.e.

o~ 1(B)={x|xE A, ¢ (x)EB}.
Then let

-— +W ry
¢(B)=BUe 1 (B)Ue 2(B)U- - - = (¢! (B).
i=0
Now, the following theorem can be easily proved.

Theorem B. Let A be a set, which besides the foregoing conditions,
satisfies the conditions that each (nonincreasing) sequence of the type a,
p(a), 9*(a), ..., (aEA) becomes constant starting from one member, where the
mapping :A— A is nondecreasing and continuous with respect to monotonic
sequences. Also, let S and T be the sets of solutions of equation ¢ (x)=x and
inequality ¢ (x)<<x, respectively. Then T o(S) holds.

3) In [14] or [15] theorem A is considered as a lemma on functional inequalities.
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Proof. Let y&T, which means that ¢ (y)<<y. Then from the suppo-
sitions we have that the sequence y, ¢ (¥), ¢*(¥), ... is nonincreasing and it
becomes constant starting from one member (i.e. for some » we have that
*tr(y)=9"(y) (=0, 1,2,...)). Therefrom we have ¢"*1(y)=¢*(y) or in other
words, ¢ (z) =z, where z=¢"(y). Hence, z& S and y&¢~"(2). So we have y&=¢(S).

5. Graph equations and a fixed point theorem.

Obviously, (¢, C) is a partially ordered set with the least element 6. Owing
to the discrete structure of the set ¢ each nonincreasing sequence becomes
constant starting from one member. Hence, there is no special need for intro-
ducing the notion of limiting value for a sequence of graphs, since it is deter-
mined in natural manner and is equal to the constant member which appears
in each nonincreasing sequence of graphs.

The following relations can be easily verified
G,CG, > G,CG,, G,CG, = L(G)CL(G),).
Therefrom we get the relations
G,CG, = L"G)CLYG), GCG, = L'(G)CL'(G)y,
where n is a nonnegative integer.

Now, it can be easily seen that Theorem A may be (at least in principle)
used for determining the solutions of graph equations

4) L"(G)=G,
(%) L"(G) =G,

where n is a positive integer. But the application of Theorem A in this direc-
tion is met with difficulties arising from the complexity of graphs structure.
Namely, in order to find all solutions of the above equations by the means
of Theorem A it is necessary to find (if any additional observations are not
made) all solutions of graph inequalities 2"(G)C G and L"(G)CG. Unfortu-
nately, it is known in graph theory that the problem of establishing whether a
graph is an induced subgraph of another one is more difficult than the so
called isomorphism problem. Hence, on the basis of the present situation the
application of a fixed point theorem in solving graph equations seems to be
nonefficient. However, the situation is better with graph inequalities as we
shall show in the next section.

6. Solutions of some graph inequalities.

Now we shall solve, by means of the introduced apparatus, the following
graph inequalities:

(6) ["(G)CG,
(7) L"(G)CG,
where » is a positive integer.
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Primarily, let us notice some intcresting properties of the opsration L. In the
st ¢ the operation L and its inverse L-1 act similarly as op:rators of differcn-
tiation D and integration D~! in some set of functions. A graph IK,=IP,
(I=0) plays the rol:? of an integration constant. Quite analogously, L” and
L~" can bz brought in ths correspondence with D" and D-". In the case
of L=n, graph P"= JI,P,(I,>0) plays the role of a polynomial of the (n— 1)-th
i=1

degree with und:termined co:fficients. In the further text the sct of all such
graphs P” will be denotzd by 2,. For example®, L-3(C,)=C,UP3, where P?
is an arbitrary element of

@3:{11K1UI2K2U13P3 I [1’ lz’ 1320}-

Let us first consider inequality (6). Now, we have ¢=I” The general
solution G* of equation (4) according to the foregoing can bz written in

the form G* = J/,C; wh2re m>3 and /,>0. So, we have set S from Th-orem B.
i=3

Now, it is not difficult to find the family of graphs L-*(G*) (k=1, 2, ...).

Having in view th= adopted notation it follows that ¢=*(G*) = L—k»(G*) = G*|_ Pk~

where P&y, (k=0, 1, 2,...). Now, we must check which elem:nts of §(G*)

really satisfy (6). It can easily bz seen that

Ln(G* Upkn) g G* UPkn
holds for each positive integer n and each nonnegative integer k.
So, we have proved the following theorem.

Theorem 1. Graph G is a solution of graph inequality L*(G)CG if
and only if its greatest vertex degree does nos exceed 2, i.e. if and only if

G:(O l,.C,.)UP‘,
i=3

where m>3 and P'cp, for some [>1.

Remark. If G,—~G, denotes that G, is a subgraph (not necessarily
induced) of G,, then G,—G, again implies L*(G,)—>L"*(G,) for each a.
Applying the same arguments it follows that incquality L”(G) -G has the same
solutions as (6).

Let us consider now inequality (7). If we start from the solutions of
equation (5) we easily find the iterated inverse images of the mapping o=1".
In order to decrease the number of involved op:zrations it is useful to have
in mind the mentioned results about equation L(G)=H from [7].

9 By K,, C,, P, we understand the complete graph, the cycle and the path with »
vertices, respectively. K, , denotes the bicomplete graph with m+n vertices.

%) Like as in the integral calculus we shall write L~3(C;)=C,(UP? instead of L-3(Cy)=
={C;UP | PPEPs}.
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Especially, the complement of a line graph must not have, as induced
subgraphs, the following graphs: C,UK,, K,UK,,, K,U3K,, C,U2K,, C,UK,
(these are complements of some graphs from fig. 1). Fortunately the process
of finding the iterated inverse images for the operation " finishes very
quickly in majority of cases. So we have arrived at the following theorem
whose proof will be omitted although it is not

quite short. K(Ki?) K(K">‘3) K(Kil)
Theorem 2. Graph inequality L"(G)CG W W I y
has the following solutions: KK>1) o
1) graphs from fig. 4 if n=1; Y’ A A
2) Poiis Puros Puggs P Fig. 4

2P,,+1, Pn+luPn+2’ Kl,s’ K1,3UPn+1’ Y +11 x
C,U2K,, Cs, 0 if n>1;

3) graphs from fig. 5 if n=2; : > <

Fig. 5
4) C,UK,UK,, C,U2K,, €

C,UP, (i=3, ..., ), C,UP, =1 >

(=2, ...,n) if n>2 Fig. 6

S) graphs from fig. 6 if n=23.
If G, is a solution then G=G,\JP", where Prcp,, is again a solution.
There exist no other solutions.
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