Nouvelle série, tome 20 (34), 1976, pp. 37-39

A NOTE ON M. PREŠIĆ'S METHOD

Miroslav D. Ašić, Vera V. Kovačević

(Communicated January 23, 1976)

In [2] an iterative method for finding k roots of a polynomial P(x) of degree n, where $1 \le k \le n$, is proposed. The formulas at the i-th step are:

(1)
$$a_{j}(i+1) = a_{j}(i) - \frac{P(a_{j}(i))}{\prod\limits_{\substack{s=1\\s \neq i}} (a_{j}(i) - a_{s}(i)) Q_{i}(a_{j}(i))}, j = 1, \dots, k$$

where

(2)
$$P(x) = (x - a_1(i)) \cdot \cdot \cdot (x - a_k(i)) Q_i(x) + R_i(x).$$

The following result is proved:

If ξ_1, \ldots, ξ_k are roots of P(x) and $P'(\xi_1) \cdots P'(\xi_k) \neq 0$, then there exists a neighbourhood U of $\mathbf{a} = (\xi_1, \ldots, \xi_k)^T$ such that the sequence $(\mathbf{a}(i)) = ((a_1(i), \ldots, a_k(i))^T)$ generated by (1) converges to \mathbf{a} if $(a_1(0), \ldots, a_k(0))^T \subset U$. Furthermore, the convergence is quadratic.

The purpose of this note is to show that this method belongs to the class of quasi-Newton methods.

Definition 1. A method for finding a zero of a twice continuously differentiable function $F: \mathbb{R}^k \to \mathbb{R}^k$ is called a quasi-Newton method if the following properties hold (see [1]):

(i)
$$\mathbf{a}(i+1) = \mathbf{a}(i) - \sigma(i) \mathbf{s}(i), i = 0, 1, ...; \sigma(i) > 0 \text{ and } \mathbf{s}(i) \in \mathbb{R}^k$$

(ii) If the sequence $(\mathbf{a}(i))$ converges to a point \mathbf{a} such that $\mathbf{F}(\mathbf{a}) = \mathbf{0}$ and $\det \mathbf{J}(\mathbf{a}) \neq 0$ then

$$\frac{1}{\|\mathbf{g}(i)\|} \|\sigma(i)\mathbf{s}(i) - \mathbf{J}^{-1}(\mathbf{a}(i))\mathbf{g}(i)\| = \mathcal{O}(\|\mathbf{g}(i-\nu)\|),$$

where $0 \le v \le k$, J(x) is the Jacobian of F and g(i) = F(a(i)).

In order to obtain M. Prešić's method we formulate the following problem: find a zero of $\mathbf{F}(\mathbf{x}) = (P(x_1), \dots, P(x_k))^T$ and in order to solve it, use the formulas

(1')
$$\mathbf{a}(i+1) = \mathbf{a}(i) - \sigma(i)\mathbf{s}(i), \quad i = 0, 1, \dots$$
$$\mathbf{\sigma}(i) = 1, \quad i = 0, 1, \dots$$
$$\mathbf{s}(i) = \mathbf{A}(\mathbf{a}(i))\mathbf{J}^{-1}(\mathbf{a}(i))\mathbf{g}(i), \quad i = 0, 1, \dots$$

where

$$\mathbf{A}(\mathbf{a}(i)) = diag\left\{\frac{P'(a_1(i))}{P'(a_1(i)) - R'_i(a_1(i))}, \dots, \frac{P'(a_k(i))}{P'(a_k(i)) - R'_i(a_k(i))}\right\}$$

 $(P(x) \text{ and } R_i(x) \text{ being the same as in } (2)).$

Note that $\mathbf{A}(\mathbf{a}(i))$ is well defined in some neighbourhood of \mathbf{a} since $P'(a_j(i))$ is close to $P'(\xi_j) \neq 0$ and $R_i'(a_j(i))$ is close to zero if $\|\mathbf{a}(i) - \mathbf{a}\|$ is small enough. It is clear that the method (1') satisfies condition (i) of Definition 1. In order to show that it satisfies the condition (ii) suppose that

$$\mathbf{a}(i) \rightarrow \mathbf{a}, i \rightarrow \infty, \mathbf{F}(\mathbf{a}) = \mathbf{0} \text{ and det } \mathbf{J}(\mathbf{a}) \neq 0.$$

We have

$$\frac{1}{\parallel \mathbf{g}(i) \parallel} \parallel \mathbf{A}(\mathbf{a}(i)) \mathbf{J}^{-1}(\mathbf{a}(i)) \mathbf{g}(i) - \mathbf{J}^{-1}(\mathbf{a}(i)) \mathbf{g}(i) \parallel \leq \parallel \mathbf{J}^{-1}(\mathbf{a}(i)) \parallel \cdot \parallel \mathbf{A}(\mathbf{a}(i)) - \mathbf{I} \parallel = (3)$$

The coefficients of $R_i(x)$ can be obtained by setting $x = a_1(i), \ldots, x = a_k(i)$ in (2). The determinant of this system is a Vandermonde determinant and the solutions are linear combinations of $P(a_1(i)), \ldots, P(a_k(i))$ with coefficients which depend on i but are bounded, since $\mathbf{a}(i) \to \mathbf{a}, i \to \infty$. Hence the coefficients of $R_i'(x)$ are also linear combinations of $P(a_1(i)), \ldots, P(a_k(i))$ with bounded coefficients and as $(\mathbf{a}(i))$ is bounded we conclude that

$$|R_i'(a_j(i))| \leqslant c \sum_{s=1}^k |P(a_s(i))|.$$

Relations (3) and (4) imply that the condition (ii) is also satisfied, with $\nu = 0$. Let us show that the sequence generated by (1') is convergent if $\|\mathbf{a}(0) - \mathbf{a}\|$ is small enough. We have

$$\mathbf{a}(i+1) = \mathbf{a}(i) - \mathbf{A}(\mathbf{a}(i)) \mathbf{J}^{-1}(\mathbf{a}(i)) \mathbf{g}(i)$$

or

$$\mathbf{a}\left(i+1\right)-\mathbf{a}=\mathbf{a}\left(i\right)-\mathbf{a}-\mathbf{A}\left(\mathbf{a}\left(i\right)\right)\mathbf{J}^{-1}\left(\mathbf{a}\left(i\right)\right)\left[\mathbf{F}\left(\mathbf{a}\left(i\right)\right)-\mathbf{F}\left(\mathbf{a}\right)\right].$$

By Taylor's formula

$$\mathbf{a}(i+1) - \mathbf{a} = \mathbf{a}(i) - \mathbf{a} - \mathbf{A}(\mathbf{a}(i)) \mathbf{J}^{-1}(\mathbf{a}(i)) [\mathbf{J}(\mathbf{a})(\mathbf{a}(i) - \mathbf{a}) + \mathcal{O}(\|\mathbf{a}(i) - \mathbf{a}\|^2) \mathbf{e}],$$

where $\mathbf{e} = (1, ..., 1)^T$, and hence

(5)
$$\|\mathbf{a}(i+1) - \mathbf{a}\| \le \|\mathbf{a}(i) - \mathbf{a}\| [\|\mathbf{I} - \mathbf{A}(\mathbf{a}(i))\mathbf{J}^{-1}(\mathbf{a}(i))\mathbf{J}(\mathbf{a})\| + K \|\mathbf{a}(i) - \mathbf{a}\|].$$

As A(a) = I and $A(x) J^{-1}(x) J(a)$ is continuous at a, there exists a ball $B_{\varepsilon}(a)$ such that

$$\|\mathbf{I} - \mathbf{A}(\mathbf{x}) \mathbf{J}^{-1}(\mathbf{x}) \mathbf{J}(\mathbf{a})\| + K \|\mathbf{x} - \mathbf{a}\| \leq \frac{1}{2} \text{ for } \mathbf{x} \in B_{\varepsilon}(\mathbf{a}).$$

If $\mathbf{a}(0) \in B_{\varepsilon}(\mathbf{a})$ from (5) it follows that $\mathbf{a}(i) \in B_{\varepsilon}(\mathbf{a})$ for $i = 1, 2, \ldots$, and furthermore that $(\mathbf{a}(i))$ converges to \mathbf{a} . According to Theorem 2 in [1] the convergence is quadratic.

Global convergence theorem cannot be obtained without further assumptions as can be seen from the following examples:

Example 1 The polynomial $P(x) = x^5 - 3x^3 - 2x$ is square-free and has three real roots. Let $\mathbf{a}(0) = (1, -1)^T$. Then $\mathbf{a}(1) = (-1, 1)^T$, $\mathbf{a}(2) = (1, -1)^T = \mathbf{a}(0)$ and the sequence $(\mathbf{a}(i))$ diverges.

Example 2 The polynomial $P(x) = 8x^2 - 1$ has two distinct real roots. Let $\mathbf{a}(0) = (1/2, 1/4)^T$. Then $\mathbf{a}(1) = (0, 0)^T$ and $\mathbf{a}(2)$ is not defined.

REFERENCES

[1] G. P. Mc Cormick and K. Ritter, Methods of conjugate directions versus quasi-Newton methods, Mathematical Programming Vol 3, No 1 (1972).

[2] M. Prešić, Un procédé itératif pour déterminer k zéros d'un polynome, C. R. Acad. Sci. Paris T. 273 (1971).