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1. Introduction

P. Antosik gave in his paper [1] a uniform approach to Nikodym and
Vitali-Hahn-Saks type theorems with additive set functions defined on a o-ring
of sets. We shall generalize some Antosik’s results. Namely, we replace a o-ring
of sets by a M-lattice and then we shall define corresponding notions. We shall
prove a theorem on uniform boundedness and two theorems on the pointwise
convergence. As a basic tool in all proofs we shall use the Diagonal Theorem.

2. M-lattice

We shall define a particular lattice which generalize the o-ring of sets.
N always denotes the set of all positive integers.

Definition 1. A partially ordered set M is a M-lattice if it has the
following properties:

(M) M is a lattice (see G. Birkhoff [2]), i.e., to all x, y&M exist
sup(x, y)=xVy and inf(x, y)=xAy in M;
(M) {x}CM = supx,cM
ieN
(we have also the notation {; X))
i=1
(M3) {y}CM, xEM = xA supy,=sup (xA\y)
iEN iEN

(the infinite distributive law);

(M) there exists we M such that w<x for every xCM (the existence
of a least element).

From (M,) follows: If x,&M for i=1,..., n then A x,CM (G. Birk-
i=1
hoff [2]).
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From (M,), (M,) and (M,) follows

(1) Sup x, A\ Sup y, = sup (x, A y,)
neN keN nk&EN

for {x,}CM and {y,}CM (B.Z. Vulih [3]).
We define some notions on M-lattice M corresponding to the notions on
o-ring of sets from Antosik’s paper [1].

Definition 2. Elements x, y&EM are called disjoint iff hold XAy=w.

A sequence {x,}C M is called disjoint iff it is pairwise disjoint, i.e.,
X, A X, =w for each n, m&N and n#m.

S, is a collection of all disjoint sequences in M (C, on o-ring in [I]).

We shall show that the collection S, satisfies the corresponding conditions
to (i)—(iv) of Antosik’s paper [1] for unconditional convergence.

Lemma. A collection S, from M satisfies the following conditions:
() If {x,}&S,, then, for each disjoint sequence {M,}CP(N) (P(N) denotes
the collection of all subsets of N)

{ Vv x}es,.

JEMp
(D) {x,} &S, implies that for each fixed m&N, the sequence
{xm/\ i \/ x,‘}nENeSo-
i=nt+m
(III) For any sequence {y,} in M and {x,}C S, holds
{xn/\yn}ESO'
AV) If {x,}ES,, then {xm”}ESO.
Proof. (I) By (1) we obtain for n£m
(V x)AC V x)= sup (;Ax)=w,
jEMp KEMm JjEMp
kEMm

because {x,}cS, and M,N\M,, = o for n£m.
(ID) For each fixed mc N and {x,}E€S, we obtain by (M,) for nss

Cn AV SNACmAC VD)=

=(_=\Z Cn AXDAC Y (A x)) =w.

r=s+m

(1) Let {x,}€S, and {y,} CM, then by commutativity and associativity
of A for n#m

('xn/\yn)/\(xm/\ym)=(xn/\xm)/\(yn/\ym)zw”

because x,Ax,=w for ntm.
(IV) A trivial concequence of the definition 2.
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3. Additive functions and Diagonal Theorem

Let X be a semi-topological semigroup with a zero element 0. This means
that a semigroup X is endowed with topology such that the semigroup opera-
tion (x, y)—x-y is continuous in each variable separately.

A function u:M—X is said to be exhaustive (or S, — continuous) iff,
for each sequence {x,}&S,, the sequence w (x,) converges to 0 in X as n—oo.
A function w is additive iff, for each two disjoint elements x, yEM, we have

pxrVy)=p )+ ().
We denote the set of all additive and exhaustive functions on M-lattice M (with S,)

with values in X, with (MS,, X).

If A and B are subsets of X, then by 4+ B we understand the collections
of all elements of the form x+y with x&4 and y&EB. If ACX and nEN,
then we assume that 14=4 and nd=(n—1) A+ A.

Diagonal Theorem. Let u,&(MS,, X) (EN), and let V,(i&EN) be
open neighborhoods of the zero element in X and {x}&S,. If, for each iCN,
we have

(2) (W () +VI)NV,= 2,
then there exists an infinite set ICN and an element x& M such that
(3) w (X)EV;

for each i< 1.
In the proof of this Diagonal Theorem we shall use

Lemma (P. Antosik [1]). Let u,&(P(N)C,, X), (iEN), and let V,(iEN)
be open neighborhoods of 0 in X. If, for each iC N, we have

(p'i (’) +VynV,=o
then there exists an infinite set ICN and a set JC I such that

w(NEV;
for each icl

Proof of Diagonal Theorem. Let v, be functions such that, for each iEN
and for each K& P (N), we have

V,-(K)=LL,-(-V xj) (iEN),
jek

where {x,}&S,. It is easy to prove that v,;&(P(N)C,, X) (using our lemma).

By (2) we can write
G;O+VY)NV,i= 2.
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Hence by Antosik’s lemma, there exists an infinite set JCN and a set
JCI such that

vil)ZV;

for each ic], i.e.,
@V xj)$Vi
jet

for each i< 1. This completes the proof of the Diagonal Theorem.

4. Uniform boundedness on a particular set

G’ denotes a semi-topological group, i.e., G’ is a topological space such
that the addition (x, y)—>x+y is continuous in each variable separately and
the mapping x-> —x is continuous.

In this section we shall prove uniform boundedness theorem on particular
sets of M, of pointwise bounded families of functions uc (MS,, G').

Let F be a family of mappings from M into G’ and let AC M. By F[A]
we understand the set of all points of the form w(x) with w&F and xc A.
The family F is said to be uniformly bounded on A iff the set F[A] is bounded
(a subset DC G’ is said to be bounded iff for each neighborhood U of 0CG’
there exists a number n& N such that DCnU). The family F is said to be
pointwise bounded on A iff for each element x<A, the set F[x] is bounded.

Now we can give the main result of this section.

Theorem 1. Let F be a family of functions v (MS,, G). If the
Jamily F is pointwise bounded on M, then for each {x.}ES,, it is uniformly
bounded on the set

A={x,, x,, ...}.

Proof. Suppose that the theorem is not true, i.e., there exists a
sequence {x,}& S, such that the set F[4] with 4={x, x,, ...} is unbounded.
Then there exists a symmetric neighborhood U of 0 (that is U= —U ) such that
for each n© N there exists an element p, & F and an index i, such that

tn (3,) 20U,
Hence
(n (x; )+ nUYNRU= 3.

By (IV) from our lemma {x,}cS,. Hence by Diagonal Theorem there exists
an infinite set JCN and an element x= G’ such that

tn (X)ERU

for each nc I A contradiction with a pointwise boundedness of the family F.

Remark 1. In particular if M is a o-ring R, theorem 1 reduces to
the Antosik’s theorem [1] (the case: C,) in which other important cases are
included.



The additive exhaustive functions on M-lattice 207

5. Vitali-Hahn-Saks Type Theorem

Let G be a topological abelian group.

In this section we shall prove that the set (MS,, G) is a closed subgroup
of the group of all additive functions (endowed with the usual addition of
functions) under the pointwise convergence.

A sequence {g,} CG is Cauchy iff for each increasing sequence {p,}C N,
the sequence {gp“l—gpn} converges to 0 as n— oo,

Theorem 2. Let w&(MS,, G) (&EN). If for each xC M the sequence
{; (x)} is a Cauchy sequence then, for each sequence {x,}CS,, the sequence
{w; (x;)} tends to O as j— oo uniformly with respect to i.

The proof of the theorem 2 is similar to the proof of Antosik’s theorem 3
of [1] with some changes: sequences {E,} of sets we replace by sequences
{x,}ES,. Also, we replace 7.(1) with

w (x) 3V,
and 7.(3) we replace with
(J'pj+1 (x"j+1) - 51"’1’ (xpjﬂ) &2v.
Hence by v;,= fp,,, — Wy, WE Obtain
Vi (xp )+ VIOV = 2.

Now, we make use of our Diagonal Theorem.
The main result of this section is.

Theorem 3. Let u,&(MS,, G) (iEN). If, for each x& M,
W (x) = lim p, (x),
then ue(MS,, G).

The proof of the theorem 3 is similar to the proof of Antosik’s theorem 4
of [1] with some changes: we replace sequences {E,} of sets by sequences
{x,} €S, and theorem 3 of [1] by our theorem 2.

Remark 2. In particular if M is a o-ring R, theorems 2 and 3 reduce
respective to the Antosik’s theorems 3 and 4 of [1] in the case C,.
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