THE ADDITIVE EXHAUSTIVE FUNCTIONS ON M-LATTICE

Endre Pap

(Communicated June 27, 1975)

1. Introduction

P. Antosik gave in his paper [1] a uniform approach to Nikodym and Vitali-Hahn-Saks type theorems with additive set functions defined on a σ -ring of sets. We shall generalize some Antosik's results. Namely, we replace a σ -ring of sets by a M-lattice and then we shall define corresponding notions. We shall prove a theorem on uniform boundedness and two theorems on the pointwise convergence. As a basic tool in all proofs we shall use the Diagonal Theorem.

2. M-lattice

We shall define a particular lattice which generalize the σ -ring of sets. N always denotes the set of all positive integers.

Definition 1. A partially ordered set M is a M-lattice if it has the following properties:

 (M_1) M is a lattice (see G. Birkhoff [2]), i.e., to all $x, y \in M$ exist

$$\sup (x, y) = x \lor y$$
 and $\inf (x, y) = x \land y$ in M ;

$$(M_2) \{x_i\} \subset M \Rightarrow \sup_{i \in N} x_i \in M$$

(we have also the notation $\bigvee_{i=1}^{\infty} x_i$);

$$(M_3) \{y_i\} \subset M, \quad x \in M \Rightarrow x \land \sup_{i \in N} y_i = \sup_{i \in N} (x \land y_i)$$

(the infinite distributive law);

 (M_4) there exists $w \in M$ such that $w \leq x$ for every $x \in M$ (the existence of a least element).

From (M_1) follows: If $x_i \in M$ for i = 1, ..., n then $\bigwedge_{i=1}^n x_i \in M$ (G. Birkhoff [2]).

From (M_1) , (M_2) and (M_3) follows

(1)
$$\sup_{n \in N} x_n \wedge \sup_{k \in N} y_k = \sup_{n,k \in N} (x_n \wedge y_k)$$

for $\{x_n\}\subset M$ and $\{y_k\}\subset M$ (B. Z. Vulih [3]).

We define some notions on M-lattice M corresponding to the notions on σ -ring of sets from Antosik's paper [1].

Definition 2. Elements $x, y \in M$ are called disjoint iff hold $x \land y = w$.

A sequence $\{x_n\} \subset M$ is called disjoint iff it is pairwise disjoint, i.e., $x_n \wedge x_m = w$ for each $n, m \in N$ and $n \neq m$.

 S_0 is a collection of all disjoint sequences in M (C_0 on σ -ring in [1]).

We shall show that the collection S_0 satisfies the corresponding conditions to (i)—(iv) of Antosik's paper [1] for unconditional convergence.

Lemma. A collection S_0 from M satisfies the following conditions:

(I) If $\{x_n\} \in S_0$, then, for each disjoint sequence $\{M_n\} \subset P(N)$ (P(N) denotes the collection of all subsets of N)

$$\{\bigvee_{j\in M_n} x_j\}\in S_0.$$

(II) $\{x_n\} \in S_0$ implies that for each fixed $m \in N$, the sequence

$$\{x_m \wedge \bigvee_{i=n+m}^{\infty} x_i\}_{n \in \mathbb{N}} \in S_0.$$

(III) For any sequence $\{y_n\}$ in M and $\{x_n\} \in S_0$ holds

$$\{x_n \wedge y_n\} \in S_0$$
.

(IV) If $\{x_n\} \in S_0$, then $\{x_{m_n}\} \in S_0$.

Proof. (I) By (1) we obtain for $n \neq m$

$$(\bigvee_{j\in M_n} x_j) \wedge (\bigvee_{k\in M_m} x_k) = \sup_{\substack{j\in M_n\\k\in M_m}} (x_j \wedge x_k) = w,$$

because $\{x_n\} \in S_0$ and $M_n \cap M_m = \emptyset$ for $n \neq m$.

(II) For each fixed $m \in N$ and $\{x_n\} \in S_0$ we obtain by (M_2) for $n \neq s$

$$(x_m \wedge (\bigvee_{i=n+m}^{\infty} x_i)) \wedge (x_m \wedge (\bigvee_{r=s+m}^{\infty} x_r)) =$$

$$= (\bigvee_{i=n+m}^{\infty} (x_m \wedge x_i)) \wedge (\bigvee_{r=s+m}^{\infty} (x_m \wedge x_r)) = w.$$

(III) Let $\{x_n\} \in S_0$ and $\{y_n\} \subset M$, then by commutativity and associativity of \wedge for $n \neq m$

$$(x_n \wedge y_n) \wedge (x_m \wedge y_m) = (x_n \wedge x_m) \wedge (y_n \wedge y_m) = w,$$

because $x_n \wedge x_m = w$ for $n \neq m$.

(IV) A trivial concequence of the definition 2.

3. Additive functions and Diagonal Theorem

Let X be a semi-topological semigroup with a zero element 0. This means that a semigroup X is endowed with topology such that the semigroup operation $(x, y) \rightarrow x + y$ is continuous in each variable separately.

A function $\mu: M \to X$ is said to be *exhaustive* (or S_0 — continuous) iff, for each sequence $\{x_n\} \in S_0$, the sequence $\mu(x_n)$ converges to 0 in X as $n \to \infty$. A function μ is *additive* iff, for each two disjoint elements $x, y \in M$, we have

$$\mu(x \vee y) = \mu(x) + \mu(y).$$

We denote the set of all additive and exhaustive functions on M-lattice M (with S_0) with values in X, with (MS_0, X) .

If A and B are subsets of X, then by A+B we understand the collections of all elements of the form x+y with $x \in A$ and $y \in B$. If $A \subset X$ and $n \in N$, then we assume that 1A=A and nA=(n-1)A+A.

Diagonal Theorem. Let $\mu_i \in (MS_0, X)$ $(i \in N)$, and let $V_i(i \in N)$ be open neighborhoods of the zero element in X and $\{x_i\} \in S_0$. If, for each $i \in N$, we have

$$(2) (\mu_i(x_i) + V_i) \cap V_i = \varnothing,$$

then there exists an infinite set $I \subset N$ and an element $x \in M$ such that

$$\mu_i(x) \notin V_i$$

for each $i \in I$.

In the proof of this Diagonal Theorem we shall use

Lemma (P. Antosik [1]). Let $\mu_i \in (P(N) C_0, X)$, $(i \in N)$, and let $V_i(i \in N)$ be open neighborhoods of 0 in X. If, for each $i \in N$, we have

$$(\mu_i(i)+V_i)\cap V_i=\emptyset$$

then there exists an infinite set $I \subset N$ and a set $J \subset I$ such that

$$\mu_i(J) \notin V_i$$

for each $i \in I$.

Proof of Diagonal Theorem. Let v_i be functions such that, for each $i \in N$ and for each $K \in P(N)$, we have

$$v_i(K) = \mu_i (\bigvee_{j \in K} x_j) \ (i \in N),$$

where $\{x_n\} \in S_0$. It is easy to prove that $v_i \in (P(N) C_0, X)$ (using our lemma). By (2) we can write

$$(v_i(i)+V_i)\cap V_i=\varnothing$$
.

Hence by Antosik's lemma, there exists an infinite set $I \subset N$ and a set $J \subset I$ such that

$$\mathsf{v}_i(J) \notin V_i$$

for each $i \in I$, i.e.,

$$\mu_i(\bigvee_{j\in J}x_j)\notin V_i$$

for each $i \in I$. This completes the proof of the Diagonal Theorem.

4. Uniform boundedness on a particular set

G' denotes a semi-topological group, i.e., G' is a topological space such that the addition $(x, y) \rightarrow x + y$ is continuous in each variable separately and the mapping $x \rightarrow -x$ is continuous.

In this section we shall prove uniform boundedness theorem on particular sets of M, of pointwise bounded families of functions $\mu \in (MS_0, G')$.

Let F be a family of mappings from M into G' and let $A \subset M$. By F[A] we understand the set of all points of the form $\mu(x)$ with $\mu \in F$ and $x \in A$. The family F is said to be uniformly bounded on A iff the set F[A] is bounded (a subset $D \subset G'$ is said to be bounded iff for each neighborhood U of $0 \in G'$ there exists a number $n \in N$ such that $D \subset nU$). The family F is said to be pointwise bounded on A iff for each element $x \in A$, the set F[x] is bounded.

Now we can give the main result of this section.

Theorem 1. Let F be a family of functions $\mu \in (MS_0, G')$. If the family F is pointwise bounded on M, then for each $\{x_n\} \in S_0$, it is uniformly bounded on the set

$$A = \{x_1, x_2, \ldots\}.$$

Proof. Suppose that the theorem is not true, i.e., there exists a sequence $\{x_n\} \in S_0$ such that the set F[A] with $A = \{x_1, x_2, \ldots\}$ is unbounded. Then there exists a symmetric neighborhood U of 0 (that is U = -U) such that for each $n \in N$ there exists an element $\mu_n \in F$ and an index i_n such that

$$\mu_n(x_{i_n}) \oplus 2nU.$$

Hence

$$(\mu_n(x_{i_n})+nU)\cap nU=\varnothing$$
.

By (IV) from our lemma $\{x_{i_n}\} \in S_0$. Hence by Diagonal Theorem there exists an infinite set $I \subset N$ and an element $x \in G'$ such that

$$\mu_n(x) \oplus nU$$

for each $n \in I$. A contradiction with a pointwise boundedness of the family F.

Remark 1. In particular if M is a σ -ring R, theorem 1 reduces to the Antosik's theorem [1] (the case: C_0) in which other important cases are included.

5. Vitali-Hahn-Saks Type Theorem

Let G be a topological abelian group.

In this section we shall prove that the set (MS_0, G) is a closed subgroup of the group of all additive functions (endowed with the usual addition of functions) under the pointwise convergence.

A sequence $\{g_n\} \subset G$ is Cauchy iff for each increasing sequence $\{p_n\} \subset N$, the sequence $\{g_{p_{n+1}} - g_{p_n}\}$ converges to 0 as $n \to \infty$.

Theorem 2. Let $\mu_i \in (MS_0, G)$ $(i \in N)$. If for each $x \in M$ the sequence $\{\mu_i(x)\}$ is a Cauchy sequence then, for each sequence $\{x_n\} \in S_0$, the sequence $\{\mu_i(x_j)\}$ tends to 0 as $j \to \infty$ uniformly with respect to i.

The proof of the theorem 2 is similar to the proof of Antosik's theorem 3 of [1] with some changes: sequences $\{E_n\}$ of sets we replace by sequences $\{x_n\} \in S_0$. Also, we replace 7. (1) with

$$\mu_i(x_i) \oplus 3V$$
,

and 7. (3) we replace with

$$\mu_{p_{j+1}}(x_{p_{j+1}}) - \mu_{p_j}(x_{p_{j+1}}) \oplus 2V.$$

Hence by $v_i = \mu_{p_{i+1}} - \mu_{p_i}$ we obtain

$$(\mathsf{v}_i(x_{p_{i+1}})+V)\cap V=\varnothing$$
.

Now, we make use of our Diagonal Theorem.

The main result of this section is.

Theorem 3. Let $\mu_i \in (MS_0, G)$ $(i \in N)$. If, for each $x \in M$,

$$\mu(x) = \lim_{i \to \infty} \mu_i(x),$$

then $\mu \in (MS_0, G)$.

The proof of the theorem 3 is similar to the proof of Antosik's theorem 4 of [1] with some changes: we replace sequences $\{E_n\}$ of sets by sequences $\{x_n\} \in S_0$ and theorem 3 of [1] by our theorem 2.

Remark 2. In particular if M is a σ -ring R, theorems 2 and 3 reduce respective to the Antosik's theorems 3 and 4 of [1] in the case C_0 .

REFERENCES

- [1] P. Antosik, The Uniform Approach to Nikodym and Vitali-Hahn-Saks Type Theorems, Studia math. (to appear).
 - [2] G. Birkhoff, Lattice theory, Coloquium Publications, V XXV, 1948.
 - [3] Б. З. Вулих, Введение в теорию полуупорядоченных пространств, Москва, 1961.

21 000 Novi Sad Šekspirova 26 Yugoslavia