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1. Introduction

Let M denote the set of all realvalued continuous functions defined on
the closed interval I=[0, 1]. T. W. Chaundy and J. B. Mcleod [3] proved that
if a function f&M and satisfies the functional equation

S = zf(x)+ zf(y,) %>0, 320, 3 x, i

Jj= i=1

IMs
ll[\/l:

m,n=1,2,3,...
then f is of the form
f(x)=cxlog,x x&(0, 11, b>1, ¢ an arbitrary constant,
=0, x=0.

Our main object in this paper (§ 2, § 3) is to discuss the continuous solu-
tions of some functional equations which are generalizations of the above
functional equation. In § 2, we have proved a lemma which secems to be quite
trivial but we have made use of it extensivelv. This lemma enables us to find
continuous solutions of many other functional equations discussed in § 4.

Throughout the paper, we shall use the fact that 0°=0 whenever a>0.
Some Functional Equations useful in Information theory.
In this section, we shall find continuous solutions of some functional

equations connected with Shannon’s entropy and its generalizations. We prove
the following theorem:
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Theorem 1. If, for all positive integers m and n, the Junctions f&M,
8&M and hC M satisfy the functional equations

A) S if(x,-y,o:é f(xi)+( éx) (élf(y,-))+déx,-°‘, >0,

i=1 j=1
f x,-“) (Z g(y,-)), «>0,

i=1 j=1

A) S S Sny)- ﬁf(x,-w(
i=1

i=1j=1

m

@A) 3 S fix yj>=i§1f(xi)+(z x) (élh@,-)), %>0,

i=1j=1

i=

=1 and d&R=(—o0, + ), then
1

I\ =

m
where x,>0, y,>0, S ox=
i=1

i 7

=c{(x%*—x)—dx, x&0, 1), a1, a>0,

f(x)=cxlog, x—dx, x&0,1), a=1, b>1,
(2.1 {
=0, x=0,1; >0,

f(x)=cxlogy x—dx, g(x)=cx log, x; x&0, D, a=1,
(22) J

= ¢ (x*—x)—dx, =c(x*—x); x&0, 1), «>0, al,
=0, =0, x=0, «>0,
= —d =0 x=1, a>0,
f(x)=cxlogy x—dx, g(x)=cxlog,x—c,x, h(x)=cxlog, x—c, x,
x&(0,1), a=1,
(2.3) =c(x*—x)—dx, =c(x*—Xx)+(c,—d)x, =c(x*—x)—c,x,
xE0,1), a>0, a#l,
=0, =0, =0, x=0,1; a>0,

-

are respectively the continuous solutions of (A, (A) and (A;) with
2.4 d=—f(1), ¢,=—g(), e,=—h(l), ¢ an arbitrary constant.
To prove the above theorem, we need the following:

Lemma. Let FEM, GEM. The necessary and sufficient condition that

m m m
2.5) > F(x)= > G(x), x>0, > x=1, m=1,2,3,...
i=1 i-1 i1

is that
F(x)=G(x) for all xc&I=]0, 1].

Proof. The sufficiency part is obvious. To prove that the condition is
necessary, we proceed as follows. Let U:7— R such that
(2.6) Ux)=F(x)—G(x), x&I.
Clearly, U&M and (2.5) reduces to

m
x,=1, m=1,2,3, ..
=1

1

2.7 S U(x)=0, x>0,
=1

i=
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We shall prove that

(2.8) U(x)=0 for all xcI.

Let m=1. Clearly, x,=1 and (2.7) gives

(2.9) U=o.

Now, let m=2, x;<1, x,=0. Then, (2.7) and (2.9) give
(2.10) U0)=0.

Let y&(0, 1) be a rational number such that y=~r—, r and u being positive
u
integers. Putting

m=u—r+1, x= =L, Xg=Xg=- =X, . 1=—, lI<r<y,
u u
(2.7) reduced to
.11y U(i)+(u—r) U<i>=0.
u u
If we put r=1, then (2.11) gives
(2.12) U(i)=0.
u
From (2.11) and (2.12), it follows that
r
(2.13) U(—>=0.
u

Since US M, therefore, by the continuity of U, (2.13) gives
(2.14) Ux)=0 for all real numbers x&(0, 1).
Equations (2.9), (2.10) and (2.14), taken together, are equivalent to (2.8). The

conclusion follows from (2.6) and (2.8).
Now we give the proof of the theorem.

For (A)), let us define

FO=3 f03), GE-fM+3 3 f()+de, a>0, xcl.
Jj=1 i—1

J

Clearly, (A)) reduces to (2.5). Since JEM =» FEM, GEM, therefore, by
the lemma,

J

@19 3 fOp)=f()+x 5 [ +dvt, a0, xCL, dER, 330, 3y 1.
Jj=1 =1 j=1

i-
Putting x=1, (2.15) gives
(2.16) (D)= —d.

13 Publication de PInstitut Mathématique
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Also, if n=2, x=0, y,=1, y,=0, then (2.15) gives

(2.17) f(0)=0.
Let n=v—s+1, 1<{s<v, v and s being positive integers, and y=i be a
v v
rational number lying in (0, 1). Choosing
s 1
h=rV=——s =)V3="'"*" =Dy s11= ">
v v

the functional equation (2.15) reduces to

(2.18) f(x : %) + (v—s) f(x- %) — F () + X7 [f(%) 4 (v——s)f(%)] +dxe,

xeI, a>0, deR
Putting s=1, (2.18) gives

(2.19) f(x-%)z%f(x)—kx“f(%)-kdx“-i, 2>0, x&I, dER.

4

From (2.18) and (2.19), it follows that
(2.20) f(x-%)=—j—f(x)+x°‘f(%>+ dx“%, xel, «>0, deR.
Hence, by continuity of f,
2.21) fOxy)=yf(x)+x*f(y)+dx*y, x&l, y=(0,1), «>0, d&R.
In particular,
(2.22) fe»)=yf(x)+x*f()+dx*y, x,yc(0,1), a>0, dcR.
Case 1. Let a=1. Then, (2.22) reduces to
Jy)=pf () +xf () +dxy, x,y&0,1), «>0, dER,
whose continuous solutions are of the form
(2.23) f)=cxlog,x—dx, x&(0,1), b>1, dER,
where ¢ is an arbitrary real constant.
Case 2. Let a1. Then, (2.22) gives

(2.24) ) +x2f(@)+dxry=xf(y)+y*f(x)+dy*x, x,yc(0,1), a>0,
a%l, dER.
If we put

(2.25) hl(x)=ﬂ’i)+d, x£(0, 1), dER.
X

then (2.24) reduces to
b ) +x k) =h, M+ h ), xye@©, 1), «>0, a#l,
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from which it follows that

h(x)=c(x*1—1), x&(,1), «a>0, a1, c an arbitrary constant.
Consequently
(2.26) fx)=c(x*—x)—dx, x&(0, 1), a>0, a#1, ¢ an arbitrary constant
Equations (2.16), (2.17), (2.23) and (2.26), taken together, constitute the requi-

red solution (2.1) of (A).

Out of (A,) and (A;) we shall give the proof for (A,) only. The proof
for (A,) follows on similar lines. Let us define

FX=35 f(y), G@=g®+x 3 h(3), x€L a>0, >0, S y=1.
j=1 : ;

Jj=1 Jj=1

Clearly, (A;) reduces to (2.5). Also, f&EM, g&M, hEM = FEM, GEM.
Hence, by the lemma,

227 S fy)=g@)+x*3 h(y), =x&I, >0, 3>0, 3 y=1
j=1 =1 j=1

J

Putting x=1, (2.27) gives

(2.28) =g +hx, xclL
Similarly
(2.29) f)=h(D)x*+gx), x&I, «>0.

Elimination of g and & from (A;), (2.28) and (2.29) gives rise to (A,;) with
d=ci+c,, ¢=—g(), ¢,=—h(), f(H=g()+h(1).

Hence, f is given by (2.1). The forms of g and % can be easily found from
(2.1), (2.28) and (2.29.

This completes the proof of the theorem.

3. Applications to Information theory
In this section, we shall point out the usefulness of the functional equa-
tions (A,), (A,) and (A;) in information theory.
If «=1 and d=0, then (A)) reduced to

(A % zn:f(xi V)= %f(x,-)-i‘ zn:f(yj), x>0, 3=0, S
i=1 J=1 i

n
x; = Z Y= 1,
i=1j=1 1 j=1

mn=1,23,...

and from (2.1), it follows that the continuous solutions of (A,) are of the form

3.1 f(x)=cxlog, x, b>1, x&(0, 1], c¢ an arbitrary constant.
=0 if x=0.

13*
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The functional equation (A,) is due to T. W. Chaundy and J. B. Mcleod [3]
who came it across while making their studies in statistical thermodynamics.
They proved that if fc M satisfies (A,) for all positive integers m and n,
then f is of the form (3.1). We have also proved the same result but our
technique is different. With f& M, the functional equation (A,) has also been
dealt with by (i) J. Aczél and Z. Dardczy [2] for n=m, (ii) Daréczy [6] for
m=2, n=1,2,... (i) Kannappan [8] for all positive integers m>1, n>1.
Recently, Dar6czy [5] has weakened the requirement of continuity and assumed f
to be measurable in (0, 1) and n=m=1 and m=2, n=3,

If f&EM in (A,) satisfies the additional condition

1 1
3.2) S (?> = o
then (3.1) becomes (with base b=2)
3.3) f(x)=—xlog, x, x&(0, 1],
=0, x=0,

and the quantity 3 f(x)=— 3 x,log, x; represents Shannon’s entropy H, (X) of
i=1 i=1
the complete probability distribution X =(x,, x,, ..., x,,), x,>0,

X, =1.

1

TIM 3

If d=0, «a>0, as~1, then (A)) reduces to

(Ag) S S Sy - éf(x,-)+< §1 x,-é) (élf(y,-)),

i=1j=1 - i=

yj=1.

m
x,20, y;>0, > X =
i=1 1

T =

From (2.1), it follows that the continuous solutions of (A,), satisfying (3.2),
are of the form f=z, where

(.49 zu(x)=%, «>0, axl, x£(0, 1),
=0, x=0,1; >0, o=£l.
Clearly,
m 1— z x,.“ m
(35) Z Zy (xi) :_I%:T, OC>0, OC# 19 xi>09 Z xi= 1'
i=1 - i—1

The RHS in (3.5) is the non-additive entropy I, (¥), «>0, a1, due to Havrda
and Charvat [1] and Z. Daréczy [4]. Thus, when d=0, the resulting form
of (A,) enables us to characterize simultaneously the entropies H, (%), and I, (),
>0, a1, Daréczy [4] characterized I,(X¥) by using a generalized form of
fundamental equation of information theory.
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In general. if f, g and A are non-identically vanishing continuous functions

satisfying (A)), (A,) and (A;), then the sums of the forms g: f(x), ig(xi),
i=1

i=1
> h(x;) represent a quantity of the form H, (X)+k, k&R, when «=1, and a

i=1
quantity of the form I, (X)+k, k&R, «>0, a1, where H,(X) and I, (X) now
denote Shannon’s entropy (upto a multiplicative constant ¢#0 and with
base >1 and non-additive entropy due to Havrda and Charvat (up to
a multiplicative constant ¢#0). In other words, H,(¥X) and I,(X) denote
the quantities ¢ Z x;log, x;, and c(Z xﬁ—l), a>0, a1, ¢#£0, respectively.
i=1 i=1

The functional equation (A,) also occurs in the solutions of (A,) and (A,)
which contain two and three unknown functions respectively. For this reason,
it is an important generalization of (A,).

Now we state the following theorem:

Theorem 2. If, for all positive integers m=1,2, ... the functions
feEM, g= M, satisfy the functional equations

(Ag) Sfx)=nr 3 xlog,x;, b>1, x>0, > x,=1, ACR,
i=1 i=1 i=

(A) Zg(x,):)\( xt.a_l), x>0, a0, AER, x,=0, > x>1,
i=1 i=1 i=1

then
3.6) f(xX)=xrxlog,x, b>1, x&l, AER,
(3.7 g(x)=r(x*—x), a>0, a#l, x&I, AER.

The proof of this theorem is omitted as the required conclusions follow
by the direct application of the lemma.

4. Some functional equations whose continuous solutions are straight lines
passing through the origin.

In this section, we give some functional equations whose continuous solu-
tions are straight lines passing through the origin.

According to theorem 2 on page 48 in [1], it is known that the continuous

solutions of Cauchy’s equation
n

(4.1) fOtx,+ 4 x)= 3 f()
j=1
on any arbitrary interval [«, ] are
4.2) f(x)=cx, ¢ an arbitrary constant, xc[«, 8],

if o, BlN[no, nBl# @. If «=0, B=1, then [0, 1]N[0, n]= & for all positive
integers n>>1 so that f&E M. We discuss below some more functional equations
whose continuous solutions are linear.

We prove the following theorem:
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Theorem 3. If fEM and is defined as
4.3) f(x)=cx, x&I, ¢ an arbitrary constant,

then, for all positive integers m and n, f satisfies the functional equations

(B) S fix)=c,
i=1

(B) é éf(x,- =6

(B,) ,§1 jflf(x ») - z ey

(8, ﬁl lilf(x ») - z 1),

®,) $ 3 sem-y [ 5160+ 3 10 ]

where %0, 3,30, § z ¥, 1. Conversely, the only continuous solutions

of (B)) to (By) are of ;he form (4 3).

Proof. The fact that f, given by (4.3), satisfies (B,) to (Bs) is a matter
of simple verification. Hence, we need to prove only the converse part.

As regards (B)), all that we need is to define F(x)=f(x), G(x)=cx,
x&1. Then, (B)) reduces to (2.5) and the conclusion follows by the application
of the lemma.

For (B,), we need to define
Fx)=3% f(xy), GXx)=c > xy;, xCI, 3,20, > y=1
j=1 =1 i=1

Then, (B,) reduces to (2.5). Since, the conditions of the lemma are satisfied,
therefore

4.4 > fxy)=73 exy, x&l 3,20, Y y=1
i=1

j=1 j=1
In particular, if x=1, (4.4) reduces to
Sfop=73 ¢y 320, S y=1, n=12....

i=1 i=t j=1

Using the lemma again, we get (4.3).
For (B,), we need to define
Fx)=3> f(xy), Gx)=f(x), xcl 320, % y=1L
j=1

Jj=1
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Following the above arguments, it follows that

.5) S fem)=f, xEL 30, 3 y=1.
=1 =

Jj=1

In particular, if we put x=1, f(1)=c, we get > f(y)=c. Consequently, (4.3)
j=1
follows. ’

We omit the proof of (B,). For (B;), we define

F@=S foo), G(X)=%[f(x)+x§f(y,-)], €L 3,20, 3 y=1.
j=1 o =

j=1

By the usual arguments

(4.6) élf(xy,-)=%[f(x)+xé1f(y,-)], xCL 330, 3 y=1.

j=1
Putting x=1, f(1)=c, (4.6) gives

n

@) S fop=3 1), 720, 3 y=1,
j=1 j=1 /

Jj=1
where

2 1 1
X)=—cx +—f(x).
() 5 2f( )
Since fEM, fEM, therefore the application of the lemma to (4.7) gives
1 1
X)=—cx+—f(x), x&l,
S 5 2f( )

from which (4.3) follows immediately. This completes the proof of the theorem.

In functional equations (B,) to (B,), there is only one unknown function.
The next theorem deals with some more functional equations involving more
than one unknown continuous functions and yet having continuous solutions as
straight lines passing through the origin.

Theorem 4. If, for all positive integers m and n, the functions f, g, h,
all belonging to M, satisfy the functional equations

(By) S S-S gx)
i=1j=1 i=1

®,) S S )= 3 h)
i=1 j=1 j=1

m n

(By) S 3 rm= [ SrerS e (y,)],
i=1 j=1

i=1j=1
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m n
where x,2>0, y;>0, Z X; = z yi=1, then
i=1 i=1

(4.8) f(x)=g(x)=cx, xel,
(4.9) Jx)=h(x)=cx, x&]l,
(4.10) f(x)=g(x)=cx, x&1,

are respectively the continuous solutions of (Bg), (B;) and (By) respectively.

The proof for (Bg) and (B,) is omitted because it is simple. For (By),
we define

F(X)=éf(?€y,-), G<x>=%[f(x)+xég<y;)], €L, 3,30, Zilyf:l-

Now, fEM, gcM => FEM, G=M. Also, (By) reduces to (2.5). Therefore,
the lemma gives

n 1 n n
@.11) Zf(xy,-)=7[f(x)+xz g(y,-)], YCL >0, 3y
Jj=1 j=1 j=1
Putting x=1, f(1)=¢, (4.11) gives
(4.12) Sf)=3 20, »=0, S y=1,
=1 j=1 j=1
where

- 1 1
X)=—cx+—g(x), x&I
g(x) ) 5 8¢ ) €
Since f& M, g€ M, therefore, by the lemma, (4.12) gives
1 1
4.13 X)=—cx +—g(x).
(4.13) () 5 5 g(x)

But, when n=1, (4.11) gives f(x)=xg (1) so that g (1)=f(1)=c. Thus, f(x)=cx,
x< 1. Substitution in (4.13) gives g(x)=f(x), x&I Thus, (4.10) is proved.

The functional equations discussed in theorems 1 to 4 can be solved by
the other alternative methods also. We hope to present them elsewhere.

Addendum. In their joint works, Behara & Nath [9], [10] have also
given the following two generalizations

(A S S fy)= (; yj“) (éf(x») + (% x,.ﬂ) (élf(y,-))

i=1 j=1
and

A 3 SIE)=3 )+ S f)+ @) (ﬁf(x,.)) (ilﬂyj))
i—1 j=1 i=1 j= ,

i=1j=1

where >0, >0, x,>0, y,>0, > x;=> y;=1. Both (A and (A,) reduce
j=1

i=1
to (A,) when a=B=1 respectively. Also, (A;) is a special case of (Ap).
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