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1. Let {p,} be a sequence of complex numbers such that

n
Pn= Z pv#(), P—1 :p-—1=0'
v=0
The transformation

1 n
(11) n_F 2 n—v v,
defines the sequence {t,} of Norlund means of the sequence {S,} of partial

sums of the series > a,. The series > a, is said to be summable (N, p,) to the
sum s if lim ¢,=s, and the series is said to be summable | N, p,| to the sum

n—»o0

s if in addition
(1.2) St =ty <eo.
n=1
In case when {p,} € M, that is,

d pn+1<pn+2<1,
Dn pn+l

p,>0 an
(1.2) holds if and only if [4]

o0

,,lnP

< 0o,

Z Pr_yY

A sequence {w,} is said to be a moment sequence if the {u,} are moments
of a function y (x) of bounded variation in the interval 0<x<1,

1
=fx”dx(x), n=0,1,2,...;
0
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the function x° is defined at x=0 so as to be continuous. It is also supposed
that ¥ (0)=0. If also, (1)=1 and x(+0)=0, so that % (x) is continuous at
origin, then u, is a regular moment constant.

The transformation
n

(1.3) m=gXﬁyNﬂwm;

where
A%p,=p, and APp, =AP~ly, —Ar-ly, . p>1,

defines the sequence {H,} of (§, ) means or the Hausdorff means of the

sequence {g,}. The series > a, is said to be (9, ) summable to the sum

s if lim H,=s, and is said to be |§, u| summable if

n—c
-

Z |HnRHn-1!<°°'

n=1

For the transformation (9, p) to be convergence preserving it is necessary
and sufficient that p, is a moment constant. If the moment constant g, is
regular, then the transformation (9, 1) is also regular. A sequence to sequence
Hausdorff transformation is absolute convergence preserving or absolutely regular
if and only if it is a convergence preserving or regular transformation of the
same type ([6], [14], [15]).

If in (1.1) we take

n:(n—l—oc—l): I'(n+o)

, a>0,
T (n+ )T ()

o—1
or in (1.3) we take
X.(x)= I —(1 _x)a: OL>0,
the Norlund and the Hausdorff means both reduce to the Cesaro mean (C, «)
of order a.
2. Let f(¢) be a periodic function with period 27 and integrable in the
Lebesgue sense in (—m, 7). Let the Fourier series associated with the function

f @) be

ft)y~ 3 (a,cos nt+ b, sin nt)= i A, (1).

n=1 n=1

We write

%40=é{f@+0+fu—0}

For «>0, the «-th integral of the function ®,, (¢) is defined

()= f (t — u)*=1 &, (u) du.

T (o)
0
For a=0,
@0 (1) = (7).

Prea () =T (x+ 1) 7%, (1), 2>0.

Also,



On the absolute Norlund summability of a series associated with a... 171

The p-th forward and backward fractional integrals of a function g (x),
which is Lebesgue integrable in (0,1), are respectively defined as

U I PR
& O-p Of (x— )P~ g (u) dlu,

and

1
- #L _ yyp—1
& (x)—l_ o) f (u—x)?~1g (u) du.

These integrals exist almost everywhere for p>0.
We adopt the following notations:

N, (t)E-f: S Puye (k) sinks;
k=1

1 ki
Jow= f (=)™ %Nn (1) dt:

1 *
Vinuyy=—— *—J (n, v) dv.
(n, u) rita fv & (n, v) dv
0

[x] denotes the integral part of x and C stands for an absolute constant
not necessarily the same at each occurrence.

3. Taking the start from the work of Hille and Tamarkin [5], Astrachan
[1] obtained the following result on the Noérlund summability of a Fourier series.

Theorem A. If ¢,,() (0<a<1)=0(1) as t—0, and the sequence {p,}
satisfies the conditions
n|p,|<C|P,l,

> k|px—pi_11<C|P,|,
k=1

S k(n—k) | pu— 2Py +Pies | <C| Pul,
k=1

then the Fourier series of f(t) is summable (N, p,).

The particular case €(t)=1 of Theorem 1 which we establish in section
5 of this paper is an analogue of the above theorem for the absolute summability
when the generating sequence {p,} © M. Theorem 2 which embodies a result
on the absolute Cesaro summability of Fourier series generalises well-known
results due to Bosanquet ([2] Theorem 1 and the case 0<a<<1 of Theorem 1
in [3]), Mohanty ([12], [13]) and Matsumoto [9].
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Theorem 1. Let c(¢) be a positive, monotonic non-decreasing function
such that

k3

(3.1) () | dora(B)|<C, (r>=, O<a<l).
i

If {p,}EM, and

(3.2) 5 2 -0 (2%,

n=N nl_aPn ‘PN

then the series >, A,(t)c(n) is summable IN,p,|.

Theorem 2. Let ¢(t) be a positive, monotonic non-decreasing function

such that
(3.3) S -o(3),

n=N

plty—a

and
k13

f s(f)ld%mka O<a<y<l, r>m

0
then the series D, A,(t)e(n) is summable |C, vl

4. The following lemmas are pertinent to the proof of Theorem 1.

Lemma 1. [11]. If {p,} is a non-negative and non-increasing sequence,
then, for 0<a<b< oo, 0<t<m, and any n,

b
Z pk el (n—k)t
k=a

<CP. ..
1
T
]
Lemma 2. If {p,} is non-negative and non-increasing and {em} is
non-negative and non-decreasing, then

O(EnP,) for all ¢,

4.1 N, (t)= o(a(n)P[1]> for t>—1—.
— n
And
., O(ne(n)P,) for all 1,
(4.2) ;t N,(tH= 0 (na(n)Pi )for t>%.

Proof. We have
2 n
!Nn(t)l<— an—ks(k):
T k=1
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and this gives the first part of the estimate in (4.1). The second part follows
easily by the application of Lemma 1. The estimates in (4.2) can be similarly
established.

Lemma 3. For O0<a<1,
O (n*e(n) P,) for all u,

4.3) T, t)=8 0 (wecmyP. . \ for u>-L.
(O )
Proof. We have
u+i
1 ’ o d 1 : s _
J(n,u)=mf (1= L Mo+ o [(t—u) =Nyt di -
u+_l_ u+7
=O(ns(n))f (t—u)““PH]dt—FO(n“ [%Nn(t)dt )(u+%<7]<7t)
u+—

=0<n°‘s(n)P i )

[+]
by the application of the second parts of the estimates in (4.2) and (4.1).
This establishes the second part of the estimate in (4.3). The first part can be
similarly established if we use the first parts of the estimates in (4.2) and (4.1).
Hence the lemma.

5. Proof of Theorem 1. Since {p,} & M, to prove the theorem, it is
sufficient to show that

oo

(5.1) S

n=1 nP,,

S Prve () v Ay (%) |< oo

v=1

Since
™

v o) == f 0 ()L sinve dr
ki dt

0

we have
™

S Pave () VA, (¥)= f cp,cm% N, (t) dt
v=1

0

T

d 1 t
= f B s — )= d®d
0
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= [T, uyd®, )
0

= Do (M) T (1, 7)o (MY (1, 7) + [ V (8, 0) d gy (1)
0

=0 (e (1)~ Q1o (M) V (1,7) + [ V (n,1) dop, (u),
0

by the application of the sccond part of the estimate in (4.3) of Lemma 3.

If, in particular, we take ¢, (f)=1, then ¢,,(f)=1 and 4,(x)=0 for
n=1,2,..., and therefore

Prea M)V (n,7) = O (n%e ().

S Par @) A, ()= 0 (e (m) + f V(n,u) d e (),
v=1

0

Hence

and therefore

S Pave )V A4, (X)

© 1
ngl nPn

2 e

ne1 HLT%P,

<C +C

u) |

T

<C+cfs(i> |d Qe () | < 00.
; u
provided that

(5.2) S % !V(n,u)|<Cs(£—),

n=1 n n

uniformly for all ¥ O<u<m).
Thus to prove (5.1) we have to show that (5.2) holds.
Write

r

1 Wl w I
3 oy 2 Ly el
(5 ) ngl nP” | V(n u)l nz:l nPnIV(n u)[+ Z 1 nPnIV(n u)] ZI_I—ZZO

Now

uJ (n,u) 1

Fl+a) I'(x)
0

V(nu)= ve~1J(n, v)dv

=0 (n*u*e(n)P,),
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by the application of the first estimate in (4.3) of Lemma 3. And therefore
F N bJ r

(5.4) Zl=0<u“s(—)) S n“_1=0<e(—)).
U n=1 u

The second estimate in (4.3) of Lemma 3 gives for u >i,
n

v, ”):V(”’T‘)_[;a{l(:’g]+ria) f V1 (1, v) dv

=O(n°‘s(n))+0<n“u“s(n)P[i])-l-

™

__;_ r a—1 . —(xi
+F(a)r(1ma)fv dvf(t V) dtN,,(t)a’t

v

=0(n°‘s(n))+0<n“u“s(n)P[i})

1

71 ni —Ey—afa—-1
trari s ] a0 [a-pea

4)

by the application of the second estimate in (4.1) of Lemma 2.
Using the above estimate of V (n,u), we get

=0 (n*e(n))+0 (n“u“s(n)P

d (n)
s
%]) n=[%}+l n1 Pn

owsof ())-of )

Combining the estimates in (5.4) and (5.5) we find, in view of (5.3),
that (5.2} is established and this completes the proof of Theorem 1.

Proof of Theorem 2. The case «=0 of this theorem is known [10] and
the case O0<a<<1 is a particular case of Theorem 1.

(5.5) S 0(1)2 _em -I—O(u“P

nla

6.* In a recent paper the author and Siya Ram [8] established the
following

* The author is grateful to Professor B. Kuttner for the contents of this section.
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Theorem B. Let =(t) be a positive and monotonic non-decreasing
Sfunction of t such that

6.1) ,,=[%+1 -nff%=o (tv—as(%)) O<t<m, r<m),
and t

62) fsﬁjw%am<a

I ’

cither (a) 7,(u) =gitv (@) +C,

or  (b) W) =gy ®W)+C,

for some function g(u) which is Lebesgue integrable in (0,1), then the series

> A,(t)e(n) is summable |9, | at the point t=x it being assumed that the
transformation (9, ) is convergence preserving.

In this section we record that Theorem 2 and Theorem B are equivalent.
In order to prove the equivalence we need the following lemma.

Lemma 4. Let a,>0. If

I
1M

an
—=0 (aN)’
n

n

then for sufficiently small >0

b

(6.3) s fccay,
n=N N
Write
[--] an
XN—nzzN n
Then

ay=N (tn—An+1)-
Replacing N by n, we find that (6.3) may be written in the form

Xn< Cl’l (Xn_ Xn+1)’
and therefore

< (1——1>
An+1S XAn Cnl
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It follows immediately from the above inequality that

2n—1 1 1
< == |
Yon<in | ] ( Cv)

v=n

Since
2n—1

1 1
6.4 lo l1——}—>——1log2,
(6.4) gg( Cv) o log

as n—> oo, it follows that the expression on the left hand side of (6.4) is less
than or equal to some negative constant for all n> 1. Hence there is a constant
K<1 such that

(6.5) Lu< K,

for all n>1. Now, for n>0 and N> 1,
2N-1 4N-—-1

Z ann")‘lz< Z z B .)a”n'n_l
n=N n=N n=2N
2N-1 a 4N-1 a
<@Ny S mi@Np S Bl

n=N N n=2N N
SCN) o+ @ N xon+ BN ayt e - -
AN Uy[27+ 47K+ 87 K2+ -+« -]

by virtue of the inequality in (6.5). If % is chosen small enough such that
2" K<1, then the sum within the square brackets converges. Using (6.3) in the
above inequality the lemma follows.

We now prove the equivalence. It is easy to verify that the conditions

(3.3) and (6.1) are equivalent. Applying Lemma 4 with a,,=s~(£) we find that

ny—«

if (3.3) holds, then it will still hold with y replaced by y' <y provided that
y—7Y' is sufficiently small. Assume first that Theorem 2 holds. Suppose that
the hypotheses of Theorem B are satisfied; then they are still satisfied with y
replaced by y'<<y provided that y—+y' is sufficiently small. Hence applying
Theorem 2 with y replaced by v’ it follows that the series 2 4, ()¢ (n) is
summable |C,y'[. But it is known ([7] that the summability |C, v’ | implies
summability |9, w| under the hypotheses of Theorem B; hence Theorem B
follows. Conversely assume that Theorem B holds. Again, if the hypotheses are
satisfied they are still satisfied with y replaced by y' <y if y—+v' is sufficiently
small. It is known (see [16] §6) that the summability (C,vy) satisfies either of
the conditions (a) and (b) with y replaced by y'. Hence applying Theorem B
with v replaced by y’, Theorem 2 follows.
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