ON THE SYSTEM OF ALL MAXIMAL CHAINS (ANTICHAINS) OF A GRAPH.* 1)

Kurepa Đuro

To my dear colleague and friend Erdös, Paul

- 0. Ordered sets constitute an important kind of graphs; it is a very natural way to transfer notions and results concerning ordered sets to general graphs.
- 0-1. From the very beginning of our study of ordered sets (E, \leq) we stressed the importance of the number

$$(0-1-1)$$
 $p_s(E, \le) := \sup_A |A|, A \in a(E, \le)$ where

- (0-1-2) $a(E, \leq)$: = $\{X | X \subset E; X \text{ is an antichain in } (E, \leq)\}$ [cf Kurepa 1935] p. 1196 and p. 1197, la relation fondamentale $(1) | E | \leq (2 p_s E)^{p_0 E}$]. The number $p_s(E, \leq)$ is called the *liberty degree of* $(E \leq)$ (s is initial of slav words sloboda or svoboda meaning liberty, freedom).
- 0-1-3. The question was whether the number $p_s E$ called also bridth of (E, \leq) is reached i.e. whether the family
 - (0-1-4) $a_M(E, \leq) := \{X \mid X \text{ is a maximal antichain of } (E, \leq) \}$

has a maximum member-one of the greatest cardinality, i.e. the cardinality $p_s(E, \leq)$.

- 0-1-5. Obviously, for any graph (G, ρ) the corresponding notions $p_s(G, \rho)$, $a(G, \rho)$ $[a_M(G, \rho)]$ are defined in the same way and are called the independence number, the system of all [maximal] independent subsets.
 - 0-2. The systems
- (0-2-1) $L(E, \rho)$, $L_M(E, \rho)$ of all chains resp. of all maximal chains in (E, ρ) are well defined; for the case of graphs one speaks often of *complete subgraphs* instead of subchains in the graph.
- 0-2-2. Remark. For every ordered set (E, \leq) the empty set \emptyset is considered as a subchain as well as an subantichain; in other words, \emptyset is member of $L(E, \leq)$ as well as of $a(E, \leq)$.

^{*} Presented partly, the 30th June 1973 on the Colloquium on infinite and finite sets (Keszthely, Hungary 1973.06.25.1—1973.06.30.6) in honour of the 60th birthday of Erdös Paul.

¹⁾ Ovaj rad je financirala Republička zajednica za nauku SR Srbije preko Matematičkog instituta.

¹¹ Publications de l'Institut Mathématique

0-3. Paths.

- 0-3-1. Definition A path or way in graph is every well-ordered subset $W=(W_0, W_1, ...)$ such that for every W_{β} , $\beta>0$ the set of indices α such $\alpha<\beta$ and $W_{\alpha} \rho W_{\beta}$ is cofinal to the set of ordinals $<\beta$; thus in particular if $\beta^-<\beta$, then $W_{\beta}^- \rho W_{\beta}$.
- 0-3-2. Let $\pi(G, \rho)$ [resp. $\pi_M(G, \rho)$] be the system of all paths [resp. of all *maximal* paths] in (G, ρ) .
- 0-3-3. Let $l(G, \rho) := \sup |X|$; the number $l(G, \rho)$ is called path-length of the graph.
- 0-3-4. Analogously the number $L_l(G, \rho) := \sup |X|, X \in L(G, \rho)$ may be called the chain-length of the graph.
- **0-4.** Cellularity. For any system S of sets we define the cellularity cS or cel S as cS: = $\sup_{H} |H|$, H running through the system of all disjoint subsystems of S; in particular, for any topological space E we define cS:=c(GS), GS denoting the system of all open sets of the space E [cf. Kurepa [1935] p. 131 where cS was denoted by $p_2 S$.
- 0-5. As always when a supremum is concerned one has to examine whether the number L_l [resp. l] is reached if the graph is transfinite. The same question applies for the cellularity.

1. Cellularity of ordered chains

- 1-1. If (C, \leq) is an ordered chain, then one could consider a *complete subdivision* of (C, \leq) and get a corresponding tree (T, \supset) of subintervals; one proves readily that
- 1-1-1. cel $(C, \leq) = \text{cel}(T, \supset)$ (cf. Thèse § 12; for instance Lemme 4 p. 121).
- 1-1-2. On the other hand, for every tree (T, \leq) we defined a number b'T as the supremum of cardinals |F|, F running through the system of all families of non radial elementary directions in (T, \leq) (cf *Thèse* p. 109 § 4].
- 1-1-3. Now, if the rank or height $\gamma(T, \leq)$ is not cofinal to an inaccesible ordinal, then the number $b'(T, \leq)$ is reached (v. *Thèse* p. 110 Théorème 3). As an obvious corollary of this théorème 3 we have the following result.
- 1-1-4. Theorem. If (C, \leq) is any ordered chain such that the cellurarity $c(C, \leq)$ is not cofinal to an inaccessible number, then the cellularity $c(C, \leq)$ is reached, i.e. the chain (C, \leq) contains a disjoint system of cardinality $c(C, \leq)$ of intervals of (C, \leq) . i.e. in the graph $(GC, X \cap Y = \emptyset)$ there is a maximum chain.

The theorem 1-1-4 should be compared to the following.

1-1-5 Theorem. The cellularity of squares of ordered chains is reached and is equal to the separability number of the chain (this result is implicitly contained in our papers [1950], [1952].

As a matter of fact, it is sufficient to consider any complete bipartition D of (C, \leq) (Thèse p. 114); if ψD denotes all elements of D of cardinality >1 each, then $(\psi D, \supset)$ is a tree of intervals in which every $X \in \psi D$ has two immediate followers X_0 , X_1 such that $X_0 \leq X_1$; one has the corresponding rectangle $X_1 \times X_0$ in (C^2, \leq) ; X running through ψD , the corresponding interiors int $X_1 \times X_0$ are open $\neq \varnothing$ and constitute a disjoint family H of cardinality $|\psi D|$; since $|\psi D| = \text{sep}(C, \leq)$ one infers that

$$(1-1-5-1)$$
 $|H| = sep(C, \leq).$

On the other hand, obviously

- (1-1-5-2) $|H| \le \operatorname{cel}(C^2, \le) \le \operatorname{sep}(C, \le)$; therefore we conclude that H is a maximum antichain in the graph $(G(C, \le), \ne \emptyset)$ and this completes the proof oI the theorem 1-1-5.
- 1-1-6. As it was pointed out in *Thèse* (cf. *Principe de réduction* P_2 , p. 130) the proposition $|T| = s(T, \leq) \cdot L_I(T, \leq)$ for infinite trees is a postulate; therefore we conclude that the proposition
 - 1-1-7. Every infinite ordered chain (C, \leq) satisfies

$$(1-1-8)$$
 cel $(C^2, \leq) = \text{cel}(C, \leq)$ is a postulate independent of other axioms in the $ZF-\text{set}$ theory (cf. Kurepa

2. Trees \mathcal{I}_n (n=0, 1, 2, ...).

[1974] for references).

 \mathcal{T}_0 is the empty sequence; if $n \in \mathbb{N}$, let T_n be composed of the empty sequence and of all elements of the set

 $\{a:=(a_1,a_2,\ldots,a_j)|\ 1\leq i\leq j\leq n,\ a_i\in\{0,1,\ldots,i-1\}\};\ \text{let}\ a\dashv b$ mean that a is an initial segment of b; then we have the tree $\mathcal{T}_n:=(T_n,\dashv)$ with quite interesting properties. At first we have the following

$$2-1$$
. Theorem. If $n \in \{1, 2, \ldots\}$ then

$$(2-2) |a\mathcal{T}_n| = \underbrace{(\ldots((2^n+1)^{n-1}+1)^{n-2}+\cdots+1)^2+1}_{n-1} + 1$$

$$|a_M \mathcal{I}_n| = (\underbrace{\dots ((2^{n-1}+1)^{n-2} + \dots + 1)^2 + 1})^1 + 1.$$

Proof.
$$a\mathcal{T}_0 = \{\varnothing, \{\varnothing\}\}; \text{ thus } |a\mathcal{T}_0| = 2$$

 $a\mathcal{T}_1 = \{\varnothing, \{\varnothing\}, \{(0)\}\}; \text{ thus } |a\mathcal{T}_1| = 3 = |a_M\mathcal{T}_1|.$

Let $1 < n \in \mathbb{N}$, then

(2-3)
$$a\mathcal{T}_n = a\mathcal{T}_1 \cup \{x \cup y \mid x \in [(0)_2, \cdot)_{\mathcal{T}_n}, y \in a[(0, 1), \cdot)_{\mathcal{T}_n}\}$$
 (cf. §4). Now, if moreover $(x, y) \neq (x', y')$, then $x \cup y \neq x' \cup y'$. If $(x, y) = (\varnothing, \varnothing)$, then $x \cup y = \varnothing$. Thus \varnothing is a common term—and unique one—of the two summands in $(2-3)$. Therefore considering the cardinal numbers, the formula $(2-3)$ yields

$$(2-4) \quad |a\mathcal{T}_n| = |a\mathcal{T}_1| + |a[(0,0,.)_{\mathcal{T}_n}| \cdot |a[(0,1),.)_{\mathcal{T}_n}| - 1. \quad \text{Thus}$$

(2-5)
$$|a\mathcal{T}_n| = 2 + |a[(0, 0), .)_{\mathcal{T}_n}|^2$$
 because $|a[(0, 0), .)|_{\mathcal{T}_n} = |a[(0, 1), .)_{\mathcal{T}_n}|.$

By a similar argument one proves

$$(2-6)$$
 $|a[(0, 0), .]_{\mathcal{I}_n}| = 1 + a[(0, 0, 0), .]_{\mathcal{I}_n}|^3$

$$(2-7)$$
 $|a[0, 0, ...), .)_{\mathcal{I}_n}| = 1 + |a[(0)_i, .)_{\mathcal{I}_n}|^i$ for $2 \le i \le n$.

In particular, for i = n we have

$$(2-8) |a[(0)_{n-1},.)_{\mathcal{J}_n}| = 1 + |a[(0)_n,.)|^n.$$

i.e.

$$(2-9)$$
 $|a[(0)_{n-1},.)_{\mathcal{I}_n}| = 1+2^n$ because $a[(0)_n,.)_{\mathcal{I}_n} = \{\emptyset, \{(0)_n\}\}.$

The elimination of the intermediary terms yields

$$(2-10)$$
 $|a\mathcal{T}_n| = 2 + (1 + (1 + \cdots + (1+2^n)^{n-1})^{n-2} + \cdots)^3)^2$, i.e.

we get the formula (2-2).

If we try to replace the symbol a by a_M in preceding formulas, then we see that we could do it in formulas (2-3)-(2-8). Only, instead of (2-9) we have

$$(2-11)$$
 $|a_M[(0)_{n-1},.)_{\mathcal{I}_n}|=1+1^n=2,$

because $a_M[(0)_{n-1},.)_{\mathcal{I}_n}$ consists of the singleton $\{(0)_n\}$. Finally, the formulas (2-11) and $(2-3)-(2-8)_M$ yield the requested equality $(2-2)_M$. This completes the proof of the theorem 2-1.

- 2-12. Remark. It is remarkable how the formulas (2-2), $(2-2)_M$ are tied: subindexing with M in $(2-2)_1$ (cf. §4) implies replacing of 2^n by 1 in $(2-2)_2$; the removing of the index M in $((2-2)_M)_1$ implies the replacing of the basis 2 in the right part of $(2-2)_M$ by the expression 2^n+1 .
 - 3. The systems LT_n , $L_M T_n$. Let us prove the following

3-0. Theorem. If
$$n \in \{0, 1, 2, ...\}$$
, then $(3-1) |L_M T_n| = n!$

$$(3-2)$$
 $|LT_n| = 1 + \sum_{r=0}^{n} 2^r r!$

$$(3-3)$$
 $|LT_n| = |LT_{n-1}| + 2^n n!$;

in particular, we have the following table:

$$(0)_i$$
: = $(0, \underbrace{0, \dots, 0}_i)$

n	0	1	2	3	4	5	6
2 ⁿ	1	2	4	8	16	32	64
n!	1	1	2	6	24	120	720
2 ⁿ n!	1	2	8	48	384	3840	46080
$\sum_{r=0}^{n} 2^{r} r!$	2	4	12	60	444	4284	50364

Proof of the theorem. The proof of (3-1) is immediate. Therefore let us prove (3-2), (3-3). At first since T_0 is the empty sequence \varnothing , we have

$$(3-4) |L\mathcal{T}_0| = |\{\emptyset, \{\emptyset\}\}\} = 2.$$

3-4. Analogously

$$(3-5)$$
 $L\mathcal{T}_1 = \{\emptyset, \{\emptyset\}, \{(0)\}, \{\emptyset, (0)\}, |L\mathcal{T}_1| = 4.$

In other words, the formula (3-2) holds for n=0, 1. Since (3-3), (3-4) imply (3-2), let us prove still (3-3) for $n \in \mathbb{N}$. Now,

$$(3-6) \quad L\mathcal{I}_n \setminus L\mathcal{I}_{n-1} = \{\{x\} \cup x' \mid x \in R_n \mathcal{I}_n, x' \subset \mathcal{I}_n(., x)\}.$$

Since x is of the form $x = (x_1, x_2, \ldots, x_n)$ where $x_i \in \{0, 1, \ldots, i-1\}$, x assumes n! values i.e. $|R_n \mathcal{T}_n| = n!$. On the other hand, for every $x \in R_n \mathcal{T}_n$ the set

$$\mathcal{T}_n(., x) := \{ \emptyset, (x_1), (x_1, x_2), \dots, (x_1, x_2, \dots, x_{n-1}) \}$$

has n elements; therefore x' in (3-6) assumes 2^n values; so does $\{x\} \cup x'$ as well: the system $(3-6)_2$ has just $2^n n!$ members; considering the cardinal numbers of $(3-6)_1$, $(3-6)_2$ we get precisely the requested formula (3-3). Simple evaluations of (3-2) for n=0, 1, 2, 3, 4, 5, 6 yielding the values indicated in the table, the theorem (3-0) is completely proved.

3-7. Second proof of the theorem (3-0). At first, (3-4) holds; further, if $n \in \mathbb{N}$, $L\mathcal{T}_n$ is formed of the chains obtained by adjoining to every member of $L\mathcal{T}_{n-1}$ a single member of $R_n\mathcal{T}_n$ (remark that $R_n\mathcal{T}_n$ has n! members). Now to each member $x_1 \in L\mathcal{T}_1$ we adjoin each of the n! members of $R_n\mathcal{T}_n$; to each member $x_2 \in L\mathcal{T}_2 \setminus L\mathcal{T}_1$ we can adjoin each of the $\frac{n!}{2!}$ members of $R_n\mathcal{T}_n$ following x_2 ; to each 0 < i < n and to every member $x_i \in L\mathcal{T}_i \setminus L\mathcal{T}_{i-1}$ we can adjoin each of the $\frac{n!}{i!}$ members of $R_n\mathcal{T}_n$ following x_i (as a matter of fact,

 $|R_i\mathcal{T}_n|=i!$ and each member of $R_i\mathcal{T}_i$ is followed by $\frac{n!}{i!}$ members of $R_n\mathcal{T}_n$). In other words

$$(3-8) \quad L\mathcal{T}_n = L\mathcal{T}_{n-1} \cup \{\{x, y\} \mid x \in L\mathcal{T}_0, y \in R_n\mathcal{T}_n[x]\} \cup \bigcup_{i=1}^{n-1} (\cup_{x_i, y_i} \{x_i \cup \{y_i\}\}, x_i \in L\mathcal{T}_i \setminus L\mathcal{T}_{i-1}, y_i \in R_n\mathcal{T}_n[x_i]).$$

Now, the constituting parts in (3-8) are pairwise disjoint; therefore passing to cardinalities and putting $(3-9) |L\mathcal{T}| = l_i (i=0, 1, .)$ the formula 3-8 yields

$$l_n = l_{n-1} + l_0 n! + \sum_{i=1}^{n-1} \frac{(l_i - l_{i-1})}{i!} n!$$

and thus

$$(3-10) \quad \frac{l_n-l_{n-1}}{n!} = l_0 + \sum_{i=1}^{n-1} \frac{l_i-l_{i-1}}{i!}, \qquad (i=2, 3, \ldots).$$

Put

$$(3-11) \quad q_i = \frac{l_i - l_{i-1}}{i!} \qquad (i=1, 2, \ldots);$$

thus in particular (cf. (3-4), (3-5)):

$$(3-12)$$
 $q_1 = l_1 - l_0 = 2$, $q_2 = 2^2$.

In virtue of (3-11) the relation (3-10) becomes

$$(3-13) q_n = l_0 + \sum_{i=1}^{n-1} q_i (n=2, 3, \ldots).$$

Therefore

$$q_{n+1} - q_n = q_n$$
, i.e.

(3-14)
$$q_{n+1} = 2 q_n$$
 $(n=2, 3, ...)$ and consequently
$$q_{n+1} = 2^2 q_{n-1} = 2^3 q_{n-2} = \cdots = 2^n q_{n-(n-1)} = 2^{n+1}, \text{ i.e.}$$

$$(3-15)$$
 $q_{n+1}=2^{n+1}(n=2, 3, \ldots).$

The formula (3-15) joint to (3-12) yields

$$(3-16)$$
 $q_i=2^i (i=1, 2, ...),$

From (3-16) and (3-11) we infer

$$(3-17)$$
 $l_i=2^ii!+l_{i-1}$ $(i=1, 2, ...);$

therefore

$$l_{i} = 2^{i} i! + 2^{i-1} (i-1)! + l_{i-2}$$

$$l_{i} = 2^{i} i! + 2^{i-1} (i-1)! + l^{i-2} (i-2)! + \cdots + 2^{2} 2 + 2^{1} 1! + l_{0}$$

$$l_{i} = 1 + \sum_{r=0}^{n} 2^{r} r! \quad (n = 0, 1, 2, \ldots). \quad \text{Q.E.D.}$$

- **4.** Notations. If T is a tree, then R_0T , R_1T , ... are its rows or levels.
- If $x \in T$, then T(., x) or $(., x)_T$ denotes the set of all members of T preceding x each. Dually, one defines T(x, .) or $(x, .)_T$.
- If r is a relation, then r_1 is its first (or left) part; r_2 is the second part of r.
 - 1973. 06. 25.1 means Monday, June 25th, 1973.

BIBLIOGRAPHY

Erdös, P. and Tarski, A. 1943 — On families of mutually exclusive sets, Ann. of Math (2) 44, 315 — 329, M. R. 4 (1943) 269.

Kurepa, Đuro, Ensembles ordonnés et ramifiés. Thèse, Paris, 1935, 6+138+2, idem, Publ. math. Belgrade, 4 (1935), 1-138.

- L'hypothèse de ramification, Comptes rendus, Paris, 202, 1936, 185-187.
- L'hypothèse du continu et les ensembles partiellement ordonnés, Comptes rendus, Paris, 202, 1937, 1196-1198.

— Sur la puissance des ensembles partiellement ordonnés, Comptes rendus Soc. Sci. Varsovie, classe Math. 32. 1939, 61—67, Re-impressed in. Glasnik Math. fiz. Zagreb, 14, 1959. 205—211.

- La condition de Suslin et une propriété caractéristique des nombres réels, Comptes rendus, Paris, 231, 1950, 1113—1114.
- Sur une propriété caractéristique du continu linéaire et le problème de Suslin, Publ. Math. Inst. Ac. Sci. Belgrade, **4,** 1952, 97—108.
- Sull ipotesi del continuo, Rendiconti del Seminario Matematico, Torino, 18, 1958—59, 11—20.
- On the cardinal number of ordered sets and of symmetrical structures in dependence on the cardinal numbers of its chains and antichains, Glasnik Math. fiz., Zagreb, 14, 1959, 183—203.
- On several continuum hypotheses, Proc. International summer school, Varenna 1968, 57—64.
- Around the general Suslin problem, Proc. Intern. Symp. on Topology in Herceg-Novi 1968, Beograd 1969, 239—245.
- Nekotorie funkcii na strukturah. Proc. Intern. Symp. on Topology and itsapp lications, Herceg-Novi 1968, Bgd 1969, 246—248.
- Odna posledovateľnosť derev'ev i odna posledovateľnosť čisel (posvećeno L. Ilijevu za 60. rođendan), Mat. strukt. Vičislitel. mat. Mat. model. Sofija, 1975, 109—111.
- Sur une suite de nombres naturels, Comptes Rendus, Ac. Sci. Paris, Séries A T.
 278 1974, 467—469 Présentée 26. 11. 1973.
 - On trees or ramifications, Math. Balk. Beograd 4, 1974, 371-382.

Đ. KurepaMatematički institutBeograd