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ON THE SYSTEM OF ALL MAXIMAL CHAINS (ANTICHAINS)
OF A GRAPH.*D

Kurepa Puro
To my dear colleague and friend Erdés, Paul

0. Ordered sets constitute an important kind of graphs; it is a very natu-
ral way to transfer notions and results concerning ordered sets to general graphs.

0—1. From the very beginning of our study of ordered sets (E, <) we
stressed the importance of the number

(0-1-1) P (E, <):=sup,|A4|, ACa(E, <) where

0~1-2) a(E, <):={X|XCE; X is an antichain in (E, <)} [cf Kurepa
1935) p. 1196 and p. 1197, la relation fondamentale (1)|E|< (2 p, E)»E].
The number p (E, <) is called the liberty degree of (E<) (s is initial of slav
words sloboda or svoboda meaning liberty, freedom).

0—-1-3. The question was whether the number p E called also bridth of
(E, <) is reached i.e. whether the family

0-1-4) ay(E, <):={X|X is a maximal antichain of (E, <)
has a maximum member-one of the greatest cardinality, i.e. the cardinality p, (E, <).

0—1-35. Obviously, for any graph (G, g) the corresponding notions p, (G, p),
a(G, p) [ay(G, p)] are defined in the same way and are called the independence
number, the system of all [maximal] independent subsets.

0—2. The systems

(0-2-1) L(E p), Ly (E, p) of all chains resp. of all maximal chains
in (E, p) are well defined; for the case of graphs one speaks often of complete
subgraphs instead of subchains in the graph.

0-2-2. Remark. For every ordered set (E, <) the empty set & is
considered as a subchain as well as an subantichain; in other words, @ is mem-
ber of L(E, <) as well as of a(E, <).

* Presented partly, the 30t® June 1973 on the Colloquium on infinite and finite sets
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0— 3. Paths.

0-3-1. Definition A path or way in graph is every well-ordered
subset W=(W,, Wy,..) such that for every Wy, >0 the set of indices « such
a<fB and W,p W, is cofinal to the set of ordinals <; thus in particular if
B-<B, then Wy~ p W,.

0-3—2. Let n(G, p) [resp. m,, (G, p)] be the system of all paths [resp.
of all maximal paths] in (G, p).

0-3-3. Let I(G, p): =sup| X |; the number /(G, o) is called path-length
of the graph. .

0—3—4. Analogously the number L;(G, p): =sup|X|, XEL(G, p) may
be called the chain-length of the graph.

0—4. Cellularity. For any system S of sets we define the cellula-
rity ¢S or celS as ¢S:=sup|H|, H running through the system of all dis-
H

joint subsystems of S; in particular, for any topological space E we define
¢S:=c(GS), GS denoting the system of all open sets of the space E [cf. Kurepa
[1935] p. 131 where ¢S was denoted by p, S.

0-5. As always when a supremum is concerned one has to examine
whether the number L,[resp. /] is reached if the graph is transfinite. The same
question applies for the cellularity.

1. Cellularity of ordered chains

1-1. If (C, <) is an ordered chain, then one could consider a com-
plete subdivision of (C, <) and get a corresponding tree (7, D) of subintervals;
one proves readily that

1—-1-1. cel(C, <)=cel(T, D) (cf. Thése § 12; for instance Lemme 4
p- 121).

1—1—2. On the other hand, for every tree (7, <) we defined a num-
ber b'T as the supremum of cardinals |F|, F running through the system of
all families of non radial elementary directions in (7, <) (cf Thése p. 109 §4].

1—-1-3. Now, if the rank or height v (7, <) is not cofinal to an in-
accesible ordinal, then the number b’ (T, <) is reached (v. Thése p. 110 Théo-
réme 3). As an obvious corollary of this théoréme 3 we have the following result.

1-1—-4. Theorem. If (C, <) is any ordered chain such that the cel-
lurarity ¢ (C, <) is not cofinal to an inaccessible number, then the cellularity
c(C, <) is reached, i.e. the chain (C, <) contains a disjoint system of cardina-
lity cel(C, <) of intervals of (C, <). i.e. in the graph (GC, XNY= @) there
is a maximum chain.

The theorem 1 —1—4 should be compared to the following.
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1-1—-5 Theorem. The cellularity of squares of ordered chains is rea-
ched and is equal to the separability number of the chain (this result is implicit-
ly contained in our papers [1950], [1952].

As a matter of fact, it is sufficient to consider any complete bipartition
D of (C, <) (Thése p. 114); if ¢ D denotes all elements of D of cardinality >1
each, then (¢ D, D) is a tree of intervals in which every X&¢ D has two
immediate followers X, X, such that X;<X,; one has the corresponding rectangle
X, x X in (C?, <); X running through ¢ D, the corresponding interiors int X, x X,
are open #* ¢ and constitute a disjoint family H of cardinality |{ D}; since
|y D|=sep(C, <) one infers that

(I1-1-5-1) |H|=sep(C, <).
On the other hand, obviously

(1-1-5-2) |H|<cel(C? <)<sep(C, <); therefore we conclude that
H is a maximum antichain in the graph (G(C, <), = @) and this completes
the proof ol the theorem 1-—1-35.

1—-1-6. As it was pointed out in Thése (cf. Principe de réduction P,,
p. 130) the proposition |T|=s(T, <)-L;(T, <) for infinite trees is a postu-
late; therefore we conclude that the proposition

1—1-—7. Every infinite ordered chain (C, <) satisfies

(1-1-8) cel(C? <)=cel(C, <)
is a postulate independant of other axioms in the ZF—set theory (cf. Kurepa
[1974] for references).

2, Trees 7,(n=0,1,2,...).

T, is the empty sequence; if nE N, let T, be composed of the empty
sequence and of all elements of the set

{a: =(ay, a5, ..., a)| 1<i<j<m, a;{0, 1, ...,i—=1}}; let a—b mean
that ¢ is an initial segment of b; then we have the tree 7 ,:=(T,, —) with quite
interesting properties. At first we have the following

2—1. Theorem. Ifnc{l, 2,...} then

(2-2) la T, |=( - (2 + D)4 1p=24 oo 124 D41
n—1
2—2)y lann[=(L;(L2”‘1+ =24 o D2 1)1,
n—2

Proof. aT,={o,{2}} thus [aT |=2
aT,={z,{e} {0} thus |aT,|=3=]a,T,|
Let 1<n& N, then
(2-3) aT,=aT,U{xUy|[x€l(0),,)7,, y€al(0, 1),-)g,}  (cf. §4).
Now, if moreover (x, ¥)#(x', '), then xUy#x"Uy. If (x, y)=(2, @),
then xUy=g. Thus ¢ is a common term—and unique one—of the two

surnmands in (2 — 3). Therefore considering the cardinal numbers, the formula
(2-3) yields

11*
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2-4) |aT,|=aT|+|al0,0,.)7,|-|al(0, 1), Jg,|—1. Thus
(2-5) |aT,|=2+]al(0,0),.) 7, | because
a0, 0), )| 7, =|al©, 1, )g,]-
By a similar argument one proves
(2—-6) |al(0, 0), -);7,,l= 14+a[(0,0,0),.)q, P
@=7) [a[0,0,..0,.)g, | 1+]al®) )z, Il for 2<i<nD
In particular, for i=n we have

(2— 8) ]a[(o)n—U ) g,,l =1 + ] a[(o)n’ ‘) ln.
ie.
2-9) |al©),_..)g, |=1+2" because a[(0),.)g,={2,{(O)}}

The elimination of the intermediary terms yields
(2-10) |aT,|=2+(1+(1+ - +@+2y7)=24 - )P e

we get the formula (2-2).

If we try to replace the symbol a by a,, in preceding formulas, then we
see that we could do it in formulas (2—3)—(2—38). Only, instead of (2—9)
we have

@=11) |ay O,y Vg, |=1+1"=2,

because @y [(0),_;5-)g, consists of the singleton {(0),}. Finally, the for-
mulas (2—11) and (2—3)—(2—8),, yield the requested equality (2—2),. This
completes the proof of the theorem 2-—1.

2_12. Remark. It is remarkable how the formulas (2—2), (2—2)y
are tied: subindexing with M in (2—2), (cf. §4) implies replacing of 2" by
1 in (2—2),; the removing of the index M in ((2—2)y), implies the replacing
of the basis 2 in the right part of (2—2),, by the expression 2"+ 1.

3. The systems LT,, L), T,. Let us prove the following
3-0. Theorem. If n€{0, 1,2,...}, then (3-1) | Lpg T, | =n!
(3-2) |LT,|=1+5 2!
r=0
(3-3) |LT,|=|LT,_,|+2"n!;
in particular, we have the following table:

1 (0);: =(0,0,..., 0)
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n 0 1 2 3 4 5 6
on 1 2 4 8 16 32 64
n! 1 1 2 6 24 | 120 720
2nn! 1 2 8 48 384 | 3840 | 46080
n
Z 2r ! 2 4 12 60 444 | 4284 | 50364
r=0

Proof of the theorem. The proof of (3 —1) is immediate. There-
fore let us prove (3—2), (3—3). At first since T, is the empty sequence &,
we have

B-4) [LTy|=[{z,{s}}=2.

3—-4. Analogously

(3-5) LT,={3,{s} {0} {2, O)}|LT,|=4

In other words, the formula (3 —2) holds for n=0, 1. Since (3-3), (3—-4)
imply (3—2), let us prove still (3-—~3) for n&N. Now,

(3-6) LINLY, ={x}Ux"|x€R,T,, X CT, (-, %)}

Since x is of the form x=(x,, x,, ..., x,) where x,&{0,1,...,i—1},
x assumes n! values i.e. |R,7,|=n!. On the other hand, for every x&R,9Y,
the set

Tules X):={2, (x))s (X5 %)y oo 5 (X}, Xy oo v s Xy}
has n elements; therefore x’ in (3—6) assumes 2" values; so does {x}jx' as
well: the system (3 —6), has just 2*n! members; considering the cardinal num-
bers of (3 —6),,(3—6), we get precisely the requested formula (3 —3). Simple
evaluations of (3—2) for n=0, 1, 2, 3, 4, 5, 6 yielding the values indicated in
the table, the theorem (3 —0) is completely proved.

3—7. Second proof of the theorem (3 --0). At first, (3 —4) holds; fur-
ther, if n& N, L7, is formed of the chains obtained by adjoining to every mem-
ber of L7, , a singie member of R,7, (remark that R, 7, has n! members).
Now to each member x, L7, we adjoin each of the n! members of R,7,;

!
to each member x,&c L7 ,\L7J, we can adjoin each of the —;T members of
R, T, following x,; to each 0<i<n and to every member x;< LT \LT,_, we

!
can adjoin each of the n_' members of R,7, following x; (as a matter of fact,
i!

!
|R;7,|=i! and each member of R,7, is followed by n_| members of R,7,).
il

In other words
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(3-8) LT,=LT,_ ,U{{x, y}| xELT,, yER,T [x]}U
n—1
U (Us{x,U{pdh %€ LT\LT ,_ 1, yi€E R, T, IxD).
=1

Now, the constituting parts in (3 — 8) are pairwise disjoint; therefore pas-
sing to cardinalities and putting (3—9) |LT |=1;(i=0, 1, .) the formula 3-8
yields
L=1I,_,+n Y+z “1)
-t !
and thus

—_ n—1 = 1.
(3-10) ?1n_""——1=10+2 l "'—‘, (i=2,3,...).

i=1 il

Put

(3-11) g;=-1—0=t (G=1,2,....)%
1.

thus in particular (cf. (3—4), (3—75)):
(3-12) q,=1,-1,=2, q,=22
In virtue of (3—11) the relation (3— 10) becomes

n—1
(G-13) g,=l+ S q (n1=2,3,...).
i=1 .

Therefore
Gu1— 90 =n> 1.
3-14) gq,,,=24, (n=2,3,...) and consequently

Gpe1=270p— =2 Gy, =+ - =2"q,_(_p=2""1, le.
(B3-15) g,,,=2"'(n=2,3,...).
The formula (3—15) joint to (3—12) yields
3-16) ¢,=2'(i=1,2,...),
From (3—-16) and (3—11) we infer
B-17) ;=2%"+1_, (@=1,2,..:);

therefore
L=201 21—+,

L=21 4 27— DV B2 = 2) 4 - -« +2224 20114 )

L=1+3 2l (1=0,1,2,...). QED.

r=0
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4. Notations. If T is a tree, then R,7T, R, T, ... are its rows or
levels.

If x&T, then T(.,x) or (-, x), denotes the set of all members of T
preceding x each. Dually, one defines T'(x,.) or (x,.);.

If r is a relation, then r, is its first (or left) part; r, is the second
part of r.

1973. 06. 25.1 means Monday, June 25t 1973,
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