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1. Definition and general properties of the functions A, (n).
Let A;,(n) be the arithmetical function defined by

(1) f)loghn= f(d) A, (%)

din

where f(n) is a non-zero arithmetical function, k is a positive integer and ),
d|n
denotes the summation over all positive divisors of n. Each function A, (n) ils
therefore a uniquely determined arithmetical function depending on the function
f(n) and on the integer k. In this paper properties of the functions Aj, (n)
will be investigated, these functions will be explicitly evaluated for most common
arithmetical functions, and corresponding asymptotic formulas will be derived.
The main reason for introducing the functions A., (n) is that they represent a
natural generalization of two classes of arithmetical functions: they generalize
the functions A, (n) investigated in [3] and [4] and the functions Ag(n) intro-
duced by B.V. Levin and A.S. Feinleib (see [5] and [6], pp. 379—380).
To see that Aj,(n) reduces to A, (n) if f(n)=1 put f(n)=1 in (1)
to obtain ‘

logk”=zA1,k (%): ZA1,k(d)

dn din
which gives by the M&bius inversion formula
n
A ()= p(d) logh— = A ().
dln d
On the other hand, if k=1 then (1) gives
n
Flogn=" f(d) Ay, (_) :
dn d
and this is the relation that defines A,(n) so that

g%
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Definition (1) can be given in another way: if

-]

F(s)= 2 f(mn=*

n=1

is the Dirichlet series of f(n) (where it should be assumed that the abscissa of
convergence of F(s) is finite), then term by term differentiation gives

F (5)=(— 1)k i f(n)logkn-n—s

n=1
so that (1) may be written as
) (—1FF® (5)=F(s) 3 Ay ()~
or ( " ‘
(=1FfF®(@s) &z _
3 =S A 5,
(3) F ) 2} rx(mn

Theorem 1.1. Let A;, (n)=A,,(n) for two non-zero multiplicative
functions f(n) and g(n) and for arbitrary k. Then f(n)=g (n).

Proof. Let F(s)= S f(mn=, G(s)= S g(nyn~ and A, ()= A, , ().
n=1

n=1

Then S App(m)n== S A, . (m)n=* and so by (3)
1 , ok

(—1FFO(s) (= 1FGP (s)

4

) F(s) G (s)

and

() (—DFF®(s) G (s)=(— 1 GPF(s).
By equating coetficients of both sides of (5) we obtain

6 It ogh® = d(llkl.

(©) 2 (% ros e *)togt

We now use induction. Since f(n) and g(n) are non-zero r.iultiplicative
functions then f(1)=g(1)=1 and (6) gives when » is a prime p that

g(1)f(p)logtp+g(p) f(1)logt 1 =1 (1) g(p)logip+f(p) g(1)loghl,
that is f(p)=g(p). Suppose now that f(p")=g(p’) for i=1,...,a—1. If we
put n=p? in (6) we obtain
i g(P) f(p*~) logkp*~i= if (P) g (p°~) logkp*,
i=0 i=0

a—1
f(p) logtp+ > f(P) f(p*~) logk p*~i=
i=1
a—1
> () f(p*F) loghp*~' + g (p?) logk p*.
i=1

i
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This gives f(p®)=g(p®) for all primes p and all integers @, and thus
f(n)=g (n) for all n, since f(n) and g(n) are multiplicative functions.

The preceding theorem tells that for a fixed k there is a one-to-one
correspondence between non-zero multiplicative functions and the functions A (n).
Since a great number of arithmetical functions are multiplicative, we may
therefore restrict ourselves to the investigation of the function Ag, (n) where,

if not stated otherwise, from now on f(n) will be a non-zero multiplicative
function.

Theorem 1.2. Let k<2 and m<k. Then

@) Ape(m)=Asy (n)log™n+ % (T) SAri@) Ay, <%) IOgm_iS—-

i=1 din
o0 B F(k)(s)
. A S (—1)ye—F =
Proof ,21 f,k(n)n (—1 F
(" [ gy S DO @ |
F(s) [ F(s) ]

gll)m (_ l)k—mF(k»m)(s) (m) m o (_I)k—mF(k—m)(S) (m—i) _
F(s) [F(S)< F(s) ) +i§1<i>F m( F(s) ) ]

e

5 (™) (1 0 i 1u]<>}
+i§'{(f>( )F(S)( D F(s)

Fk—m) (S)](’") L
F(s)

Using the fact that

(_ l)iF(i) (S) © _ » F(k*—m) (S) (m—1i)
A S A, A R s o 1yk—ij .\ —
F(s) 2 e (D) [ F(s) ]

> Apiem () log™n-n=%,

n=1

and the uniqueness theorem for Dirichlet series (see [2], pp. 244—245) we
obtain (7) after equating coefficients in the last identity.

Corollary. If we set m=1 in (7) we obtain

(8) A=A () logn+ 3 Ay @) Ay (),

d|n

Theorem 1.3 There does not exist a k for which Agy(n) is multi-
plicative,
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Proof. Let (m,n)=1. If d,|m, d,|n then d,d,|mn and conversely,
if d|mn then d=d,d, where d,|m, d,|n and (d,, d,)=1. Suppose Ag, (n)
multiplicative for some k. Then

Af,k (dl dz) = Af,k (d1) Af,k (dz)

> 7% )zf( ) A sy - Zf(id";) A (@) zf(diz)Af,k(dz)

dylm dyln dym dyin

Zf<d> (d) Ay, (d dy) =f(m)logkm-f(n)logkn

dy|m dy|n
s f( mn )Af,k(dl d) =f (m) f () (logm logny*
dydy|mn dl dz

» f( ) Ay (d)y=F(m) £ () (logm logn)

d|mn
f(mn) logt mn=f(m) f(n) (logmlogny"
Since f(n) is a non-zero multiplicative function we have
logk mn = (log m logn)~,
logm 4 logn =logm - logn,
which is a contradiction that proves the theorem.

Theorem 1.4. Let (g, h) be a pair of multiplicative functions

and f(n)= Zg(d)h( ) Then

din

n
©® A= Agk<n)+A,,k<n)+z( ) 5 A ) A (%)
dln
Proof. f(n) as an arithmetical convolution of two muitiplicative functions

is also multiplicative. If F(s)= if(n)n‘s, G(s)= i g(m)yn—s and H(s)=
n=1

n=

z h(n)yn—s, then f(n)= z g(d)h( ) gives F(s)=G (s) H(s) so that

n=

(— 1) F® ()= (— 1 [G @) +HE @+ 3 (1) 0 He (s)]
4

i=1

e FPO 1 GP© e HP ) |

s Y w 0 e
k—1 (_ l)i G(i)(s)(— l)k—iH(k—i) (.S)
gl( i ) G(s) H(s)

Using the uniqueness theorem for Dirichlet series and equating coefficients
of n=* we obtain (9).
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2. Explicit evaluation of A, (n) for certain arithmetical functions.

This section gives explicit evaluation of A, (n) for some most common
arithmetical functions f(n). The formulas that are obtained involve very often
the functions A, (n), which is to be expected since A, ,(m)=A;(n) and the
functions A, (n) appear also in the following lemma.

Lemma 2.1. If g(n) is a totally multiplicative function then
(10) Ap (M) =As, (n) g(n).

Proof. Since g(n) is a totally multiplicative function g (mn)=g (m) g(n)
for all m and n so that

F@)login="S f(d) Az, (;) ,

dln

Ky — M i
f(n) g (n) logtn Enf(d)g(d ()
De DA, (V=S f@ e@ AL () g (2.
S @e@ w5 3 /@@ ()8l G)
Therefore A, , (n)=As, (7) g(n), and as a corollary we obtain for f(n)=1 that
(11) Ag,k(n)zAx,k(n)g(n)ZAk(n)g(n)’

which gives explicit evaluation of A, (n) for multiplicative functions g (n) which
are totally multiplicative.

An arithmetical function f(n) is said to be squarefree if f(n)=0 whenever
there exists @>1 such that a?|n.

Lemma 2.2. If f(n) is a squarefree multiplicative function then

A — — 1) fe l 1 k_n_,
(12) () g[[}d( )f(p)]f(d)og .

where p*||d means that p* divides d and p**' does not.

Proof Since f(n) is squarefree and multiplicative then

F(s)= if(n) n=T1A+ (P p > +f(PHp~ 2+ )=T]A+S(P)P™).
n=1 b

P

1 1 s o ,
= [, —1)ifi ) —lS’
ro g L2 rwr
- . E(k) () _

Appmyn=s=(—1)f ——=
~1

n

[i f(n) log n- n—s] [n 31 <p>p-fs]
n=1

p i=0
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The coefficient of #n~* in the last expression equals

Z[H(—mﬂ@ﬂdgy%—ﬂ

dinlp*lld

so that (12) is proved.

Evaluation of A, , (n). The M6bius function w(n) is squarefree and thus
lemma 2.2 may be used. Moreover, u(p)=—1, | [ (— 1> f*(p) =1 and therefore
r*ld

(13) A= u (~—)lo §=zy¢(d)logkd.

dln din

Since Ay (n)= > p(d) log"g , which is similar to (13), it might be expec-
d\n

ted that A, ,(n) could be expressed in some way by the functions A, (n). This

is indeed so as

n k
Apr (=S p(d)logtd="S u(d) (logn~log;> _

din din

zmachVtk

din

. R
login-logk-t— =
i > d

1 din

z o.(d) Z (— 1) ’(k>logn logh= "+ S (d) loghn =

kg(—l)""(k)log"n S w(d)logh—i 7 —
i=0 j d

1 d|n

»

2]

)Ak_i (n) log' n.
14
This gives for k=1
(14) Ay, (=N, (m)=—A, (m)=—~A(n),
where A (n) is the von Mangoldt function.

Evaluation of A, ,(n). Since all characters y (n) for a given modulus i are
totally multiplicative functions, (11) gives immediately

(15) Ak (W)= (m) Ay (n).
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Evaluation of A, (n). T(n)=2 1 is the number of divisors function. If
din

we use theorem 1.4 with g(n)=rh(n)=1 then
k

1

k—1
(16) Ap(m)=2A,(1)+ S (

n
)3 M A ).
=1 din d
Evaluation of Asix(n). o,(n)= > d'=73 (i)l is the sum of divisor powers
din d|n
function, where i>0. Theorem 1.4 can be used with g(n)=1, h(n)=r,
Ay (n)=n' A, (n) (since h(n) is totally multiplicative) to give

(17 JWAMHMMU+MJ§H)%AHMM{§MQY

j=t1\]

Evaluation of Ag,, (n). Euler’s totient function ¢ (n) can be expressed as

b(n)=> pd) g/, and therefore theorem 1.4 may be used with g(n)=up(n),
din
h(n)=n to obtain

k—1i k
(18) AMW:MAwmmw+z()zmxwqu)@
dln

i=1 i d] d

Evaluation of A, ,(n). The function r(n) is the number of represen-
tations of n as a sum of two squares. It is known ([2], pp. 241-—-242) that

r(n)=4 % ¥ (d) where
din

n(n—1)

X(n)':t(—l) 2 n—2k+1

0 n=2k

and the constant 4 comes from all possible combinatitions of signs when
n=x2+y2 The function y(n) is the non-principal character mod 4 and therefore
Ay w(m)y=7%(n) Ay (n). If we put r(n)=4s(n) where s(n)= 2. %(d) then

dln

sl (k)
( > r(n)n”“)
(— 1)k"_:‘_~_ =
R(s) > r(mn?

n=1

" R(k) (s) _

S A (s =(—1)
n=1

( i 4s (n)n—x>(k) ® o
= 52O S Ay,

(—1)F
> 4s(n)n—s S(s) =1
n=1
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so that A, (n)=A, . (n). For s(n) theorem 1.4 may be used with g(n)=1,
h(n)=7y(n) and therefore

(19) A, () =A, () =1+ %) A+ S (

i=1

k n n

A@A_ )Y x[—).
Z)E @hei()2()
3. Asymptotic formulas.

This section contains asymptotic formulas for 2, A () when f(n) is T(n),

w(n) or ¢ (n), and a general theorem about > Ag . (n) with applications to

functions connected with the two-square probléin and to the function =, (n)
which is the number of representations of # as a product of m factors.

Theorem 3.1 Z A (m)=k(k+1)xlogt-1x+ 0 (xloghk-1x).

Proof. Using (16) and formulas

(20) 2 A (n)=kxlogt=1x + 0 (xlogk-2 x),

Is!
@2n Z A, (m)A;(n) AL xlogr+s-1x 4+ O (x logr**=2 x)
mn<;x (r_;_s_ﬁl)l

proved in [3] we have

s 32 5(5) 3 30 (2]

n<xd.n

I

k—1 /
2kxlogh~1x+ 0 (xlogh=2x) + > (k> > A A (n)=
i=1 mn=ix

k lkVil(k—i)! xlogk-1x

+2kxlogk-1x+ O (xlogh—2x) =
21 (k=D it (k—1)! & )

k—1
2kxlogh-tx+ > kxlogt-!x+ 0 (xlogt-2x)=
=1

=

k(k+1)xlogt-1x+ O(xlogt-2x).

—x+0(x ) k=1
logx .

O (xlogk—2x) k>2

n<x

Theorem 3.2. % Au,k(n)z{

Proof. Partial summation of (20) gives

(22) S Ay (m)login=kxlogh+i=1x + O (xloghk+i=2x).

n=<x
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Using (22) and the formula

k
Ay () = z (— 1 () o (m) login
with k—i instead of k& we shall have

i=0

ZAuk(n)“ > z (—D* 1A, ;(n)login=

n<=x i=0

Z (— 1)y ‘( )[(k—z)xlogk Lx + 0 (xloghk—2x)] =

k—1 i
[Z (~1)k""(k~i)< ) )}xlogk’lirO(xlogk*zx)—
i=o i

Z (—1)1< )]xlog" 1x4+ 0 (xlogk-2x)=

d(1—1)|
dt

xlogk-1x+ 0 (x logk 2 x)
t=1

because

-x+0< al > k=1
Jog x

O (xlogk—2x)
el k=l
- | 0 k=2

kx? . i 2 k=2
ZA(M(”)ZTIOE% x4+ 0 (x*logh—2x)

k>2
d(1—1)k

dt

Theorem 3.3.

Proof. Using (18) we have

k
3 Aail) = 3 A+ 5 0y (m)+ 3 (z‘ ) 2 X Au,i<d>Ak4(£>%'
== i=1 n=xd|n
For k=2 > A, ,(n)=0(xlogt-?x) and thus

ZRM @)

d: 2 Ay (m)y Ny (myn=

for i=1 k=1

Z nl_;(n) > A, (m)=

m<x/n

> nh_; ()0 (i logi-1 —x~> =
n<x n

n
O (xlogi='x S Ay_;(n))=0 (xlogi-'x x logk—i 1) =

n=x

O (x*logk—2x).
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Partial summation of (20) gives
kx? | ko1 2 |ook—2
> nAk(n):Tlog x+ 0 (x%logk—2x),

n=ix

which proves the theorem for k=2, but since Ay, (n)=(n—1)A,(n) it is
casily seen that the theorem is also true when k=1.

Before passing on to theorem 3.4, it is necessary to prove the fol-
lowing lemma.

Lemma 3.1 Let f(n) be a non-negative (not necessarily multiplicative)
arithmetical function and let for m>=2

> f(n)=Alog" x+ O (log" 1 x),

where A+#0. Then
=0 (log"1x).

s AQ)

nx Iog—x
n

Proof. Since by hypothesis we have

AN Alog"~!1x+ 0 (log" 2 x)=0 (log"1x),

n=x 1ng

it is sufficient to show that

1 1
S| =0 (log™!x).
n<lx 2x Ing
log—
1 1 . dt
|- = n =
,,fo( ) 2x  logx ,,gxf( ) tlog?t
log—- 2x/n
n
A ()
0(l)+f——2x/’£”§x dt =
3 tlog?t

x m m—1 —Alogm?2 m—12 t
0(1)+fAlog x+ O (log"~1x) l (;g x/t+ O (log x/ )dt=
tlog? ¢

2

n m—1 . m—1 m—1
0(1)+f0(log x)+Clogx-logn-1t+ O (log x)dt
tlog*t

=0 (log"1x).

2
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Theorem 3.4 Suppose Ay (n)=0 and

23 A Ax+0(——),

(23) RO (1gx)

where A=£0. Then

@4 Z x(m)=4 l_[(1+ A) xlogh-1x+ 0O (xlogk-2x).

Proof. Induction on k. Since (24) reduces to (23) when k=1, the
theorem is true for k=1. (23) in fact generalizes the prime number theorem,
since for 4=1, f(n)=1 we obtain

S A= A<n>:x+0(g’;-;).

n<x n<x

which is a version of the prime number theorem (see chs. I and III of [1])
with a weak error term. Thus the hypothesis made in (23) is a natural one,
since many arithmetical functions have asymptotic distributions similar to the
distribution of primes.

Suppose now the theorem is true for some %, then by (8)

Apier ) =Ai (W logn+ 5 Ape(d) A, (%) ,

din

which shows that A, (n)>0 implies A, (n)=>0 for all k. Summation on n gives

2 Appeim= 3 Agi(mlogn+ 3 > Aﬁk(d)AJ(_ZT>Z

n<<x n<x n<xdn
Z Asy (n)logn+ > App () 5> Ag (m).
n<x m=_x/n
. 2 .
Since for x>2 < , (23) may be written as
logx log2x
25 A, (1) =Ax+0 )
) ngx 51 = (1og 2x
which is easier to work with because A ™ stays beounded for n=x,
log—f
while does not. n
logi
n

Partial summation and induction hypothesis give

k—1
(26) S A (n) logn=A H(l+i:)-xlog"x+0(xlog"“1x),
n<<x = 1
k—1
@7 > Ap () %H( )log x+ 0 (logh-1x).
n<x n i=1
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Therefore
Ax x
> A 3 A, )= 3 A |—+0 | ————||=
n<x m<x/n n<x h X
nlog—
n
A2 k-1 A
——-l'](1+—)-xlogkx+0(xlog"—1x)+0 xS Are® ) _
k i=1 i n<x 2x
nlog —
n
AZ k—1 A
(28) —k—-H(l+f>-xlogkx+0(xlogk*1x),
i=1 i

where lemma 3.1 was used with f(n)=i (M), m=k Addition of (26)
n

and (28) gives
Z Af,k+1(n):

n<<x

k—1 2 k-1
4 (1+4)"‘1ng?€+%-l_[(1+i4'~>.xlogkx+0(xlog"—1x)=
i

i=1

k
AT] 1+i -xlogkx+ O (xlogk-1x),
i=1 i

which ends the proof of theorem 3.4.

Consider first the application of theorem 3.4 to the function b(n), the
characteristic function of numbers that are a sum of two squares:

1 n=x%+y?

b (n) = "

0 n£x*+ y?

The function b (n) is multiplicative, and from the formula r(n)=47 ¥ (d)
d|n
it is easily seen that the multiplicative semigroup of numbers that are a sum
of two squares if generated by 2, by primes of the form 4k+1 and by
squares of the primes of the form 4k+ 3. Therefore

oo

B()=3 bmn==(1-2""1 T] (A—p " [J] «A—p7®)7L
1

n= p==1(mod 4) p=3(mod 4)

logB(s)=—log(1—2")—log [] (I—p)—log J] @—-p2),

p=1(mod 4) p=3 (mod 4)
o B’ (s)
A, (mpps=——"=—[logB(s)] =
El 51 (1) B(s) [ ()]
» log2 logp + 2logp

i-—Z Qs +

p=1(mod 4) i=0 P* p=3 (mod 4) i=0 PZ”



On a class of arvithmetical functions connected with multiplicative functions 143

so that
logp n=p" p=2, p=1(mod4)
Ab,l (n)= Iy . .
2logp n=p* p=23(mod 4)
> Ay ()= > log2+ 5 logp+ > logp=
n<x 2<x pi<<x pRi<x

r=1(mod 4) p=:23 (mod 4)

ol
2 log x

where the theorem for prime numbers in arithmetical progressions ([7], p. 157)
and partial summation are used.

Theorem 3.4 may now be applied with A=-;— so that

1 #=1 1
29 A, () =— 1+ —\Vxloghk-1x+ 0O (xlogk—2x)=
(29) PR zLK 2) g (x logt—2 x)
Qk—1)N

21! xlogk-1x+ 0O (xlogk—2x).

To obtain the asymptotic formula for > A, (n) note that by (19)

n<<x

A, (n)=A () +x (m) A (n)
so that A,  (n)>0 since
0 n#p'
0 n=2¢
A= logp n=p p=1(mod 4)

(—1ilogp n=p p=3(mod 4)
> A (W)= A(n)+ Z x(n) A(n)=

n<x n=<x
X
x+0< )-l— logp + (—logp) =
log x pgx pgx
p==1(mod 4) p=3(mod 4)
w0 (s (3o len)) (3 o ga))
log x 2 log x 2 log x
x+0( X )’
log x

where the prime number theorem for primes in an arithmetical progression
was used again. Theorem 3.4 gives then (4=1)

(30) > A k() =kxlogt-lx+ O (xlogt=2x).

n<x
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Finally, let <, (n)= > 1 be the number of representations of n as
aja- . ~am=n

a product of m factors (of which any may be unity). Since ([2], p. 255)
()= > Tm(n) n=° we have

n=1

i A, (Mn=s=[—log{m(s)] = *—mcl ) _ i mA(m)n=s
n=1

C(S) n=1

so that
A, (my=mA@m).

The hypotheses of theorem 3.4 are satisfied since A (n)>0,

S Aoy () =mS A(n):mx+0(1

X
(o}

gx)’

k—1 .
Theorem 3.5. > A c(m)=m n@.xlogk—1x+0(xlogk—zx)'
i

n=<x i=1

so that we obtain with A=m

If we set m=2 we get another proof of theorem 3.1 since
k=12 4i

21_1 =k(k+1), and 7,(M= > 1= 1=1(n).

i=1 i aa,=n din
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