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1. Introduction

In [17] Rabinowitz investigates the structure of solutions of a nonlinear
eigenvalue problem of the form x=G (%, x) where G:R x X—X is a completely
continuous, in O Fréchet-differentiable operator and X a Banach space. He
demonstrates the existence of continua of solutions and gives an alternative
description of them. Applications are given to nonlinear Sturm-Liouville problems
for second-order ordinary differential equations, to nonlinear eigenvalue problems
for a class of quasilinear elliptic partial differential equations on bounded do-
mains in R" and to Hammerstein integral equations with oscillation kernels
({17}, [18], [19]).

In dealing with differential equations on unbounded domains the assumption
of a completely continuous nonlinearity has to be relaxed. Thus Stuart [10] con-
siders the operator equation x=ANx, where N:X—X is a k-set-contraction.

On the other hand the study of nonlinear Steklov problems leads Stuart
and Toland [22] to an extension of Rabinowitz’s result to the case, where the
derivate of G has the form A4, +2A4,.

In his thesis Laloux [10] shows, that some technical assumptions which
Stuart and Toland had to suppose, can be avoided by using an extension of
Rabinowitz’s result for a bifurcation equation Lx=N(}, x), where X, ¥ are
Banach spaces, L:X DD(L)—>Y is a Fredholm operator with index 0 and
N:X—7Y is completcly continuous. Some other applications are also given.

In proving their alternative results Rabinowitz and Stuart use the Leray-
Schauder respectively the Nussbaum degree. The extension, given by Laloux,
is based on a coincidence degree for completely continuous nonlinearities, estab-
lished by J. Mawhin in [14]. Using coincidence degree for k-set-contractions
[5], we derive Stuart’s result for operator equations Lx—ANx, where L is like
above, but N is a k-set-contraction (Section 3. and 4.).

In Section 5. we reduce as an application a boundary value problem for
a nonlinear functional differential equation of neutral type to an eigenvalue
problem for a linear functional integral equation. In Section 2. we collect some
later needed definitions and results.
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2. Preliminaries

Let X be a real Banach space. The set-measure of noncompactness vy of
a subset M of X is defined by:

y(M): = inf {e|>>0, there exists a finite covering of M by subsets of X
with diameter Jower than e}.

Assume that Y is a further real Banach space, QC X and kER*, then
a continuous function f:Q— Y is called k-set-contraction, if y(f(M))<kvy(M)
for each bounded subset M of Q. Usually a O-set-contraction is said to be
completely continuous (compact). We introduce the following notation: D(f)
means the domain of f, R(f) the range of f. If L: XD D(L)y— Y is a linear
operator, Ker (L) denotes the null space of L, and we set:

a(L): = dim (Ker (L)), B(L): = dim(Y/R(L)),

where o (L)= oo respectively §(L)= oo in the infinite dimensional case:

L is called a @, -operator, if L is closed, R(L) is closed, and o (L)< oo,
and a Fredholm operator, if additionally B (L)< o. If L is a Fredholm opera-
tor, ind (L): =a (L)~ P (L) means the (Fredholm-) index of L. Further we set:

1(L): =sup{r{r&ER", ry(M)<~y(L(M)) for each bounded MC D (L)}

In [5] is shown that for a closed operator L, 1(L)>0, if and only if L
is a @ -operator. Basic for the sequel is the concept of coincidence degree,
given in [5]. We sketch the here needed case; we assume:

(a) X, Y are Banach spaces, L:X DO D(L)—>Y is a Fredholm operator,
and ind (L)=0.

(b) QC X is open and bounded, QD (Ly#®, N:Q->Y is a k-set-
-contraction with 0 <k<1(L).

(¢) Lx#Nx for x&oQND(L), where 0Q denotes the boundary of Q.

From (a) we deduce the existence of continuous projectors P:X— X,
Q:Y—Y with R(P)=Ker (L) and Ker (Q)=R (L), and of a linear isomorphism

J:R(Q)— R(P). Further we set Lp: =L|Ker(P)1D(L) and remark that Ly
is continuous according to (a). Finally let M;:Q-—> X be defined by:

M,: =P+JoQoN+Ly'o(I-Q)oN

then M, is a k/1(L)-set-contraction and 04 (/—M,)(0Q), since (b) and (c) are
satisfied. Therefore we can define the coincidence degree of (L, N) by:

D,[(L, N), Q]: =deg(I- M,, Q, 0)

where deg denotes the degree for k-set-contractions with 0<k <1, {I5].
D,[(L., N), Q] is independent of P and Q and has the following properties;

(1) D,[(L, N), Q]5#0 implies that there exists an
xCQND(L) with Lx=Nx.
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(2) If Q,, Q, are open subsets of Q with Q NQ,= g
and {x|x&QND(L), Lx=Nx;}C Q,ULQ,, then:
D,[(L, N), Q1= D, (L, N), Q]+ D, [(L, N), Q,].
(3) If N:[0, 1]xQ— Y is a k-set-contraction with
Lx#N (., x) for each x£0QND (L) and AE[0, 1], then
D,I(L, N (0, o)), Q1= D,[(L, N(1, o)), Q).

For convenience we set: D[(L, N), ®]=0. Then one obtains the following,
later needed homotopy property from proposition 7 in [15]:

Lemma 1: Assume that (a) is satisfied, 1 is a compact interval in R
and ®£QCIx X is open and bounded in Rx X with pr,(Q) D (L)#®D, where
pr,:Rx X—X denotes the projection on X. Let F:Q—Y be continuous and
k&[0, 1(L)) with: v (F(B)<ky(pr,(B)) for each BC Q. Furthermore set
Q,: ={x|(t, x)&Q} for tcl. Then D[(L, F(t, o)), Q)] is independent of tCI,
provided that Lx+#F (t, x) for all (¢, x)E0QND(L).

We end this section with the definition of a coincidence index. Assume
that (a) and (b) hold, but Q is not necessary bounded, and that x&QM\D (L)
is an isolated coincidence point of (L, N). For each B,: ={x|xCX,||x—x| <¢}

— o
with Lx7Nx for each x#xEB,ND(L)DI[(L, N), B,] is defined and indepen-
dent of p. Therefore we can define the coincidence index by:

i[(L, N), ¥]: =D[(L, N), B,

Additivity and homotopy property can be deduced, using the corresponding
assertions for the coincidence degree.

3. Rabinowitz’s Theorem for (L, IV)

We recall the following definitions:

Definition 1: Let X, Y be Banach spaces, and L:X DD (L)— Y and
A:X— Y be linear, then A=R is called a characteristic value of (L, 4), if
Ker (L — 1 A4)£{0}, otherwise regular.

Definition 2: Let X, Y be Banach spaces, L: X D D (L)— Y be linear,
and N:R x X— Y continuous with N(», 0)=0 for each AR, then (u,0) is
called a bifurcation point, if for every e>0 there exists (A, x)CRx X with:
[A—p| <e, 0<||x|[<e, and Lx=N(, x).

In the sequel we suppose:
(H1) X, Y are Banach spaces over R, L: X OD(L)—>Y
is a Fredholm operator with ind (L)=0.
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(H2) N:X—Y is a k-set-contraction with k[0, 1(L)),

A,B: X— Y are continuous maps with:

A linear, lim M’:o, and N=A4+B.
llxl1=0 [} x ||

Under these assumptions we consider the bifurcation problem Lx=»xNx.
The restriction, concerning A in regard to [17], [18] and [11], is caused by the
fact, that the contraction constant is dependent on A in contrast to the case,
where N is compact.

We need the following assertions:

Lemma 2: Let (HI) be satisfied, A:X— Y be a linear k-set-contraction

L) TP
)

with k&[0, 1 (L)), and pE (— & be regular. Then the set of charac-

teristic values in each compact subinterval of (——1 ECL), 1) ;L))

is finite.

Proof: The case k=0 (i.e. A is completely continuous) is proven in
[13]. Hence assume k< (0, 1(L)). Since p is regular, L—u A is injective. There-
fore AER is a characteristic value of (L, A), if and only if A is a characteristic
value of

(L—pA) lo(L-AA)=T—A—p)(L—pAd) lod.

Now assume that €>0 is sufficiently small. We show:

1(L .
Case 1: If >0, the set of characteristic values in |0, »Ll—s is {i-
k
nite, and there is a regular value of (L, 4) in [——(L—)-—H:, 0]. Since 1(L-—

—uAd)>1(Ly—wk ([5}] Theorem 2), T: =(1%2—s—p.)(L—p.A)_10A is an a-

-set-contraction with o = (1%') —g—~ p.) k(1(L)—wk)~-'<I1. Using [I1] Theorem

12, we obtain: The set of characteristic values in [—1, 1] of (I, T) is finite,
hence the set of (L, 4) in ( ) e+2u IECL)—s]. If —2y.>—%+ g,
case 1 is proved. Otherwisc we choose a regular value w, with; p, <p—

| .

<*LLl 8‘&*) = —»L(lﬂ—e— 3;;.) , and repeat the above described pro-
2\ & 2\ k

cess. Then we receive: (L, A) has only a finite number of characteristic values

in[ & )+ +2p,, 1 _ s]. Since _1_(Q+€+2H_(_@_+8+2“1)/1(L2_
k k k k

—a—y.>0 we obtain case 1 after a tinite number of steps.

1) For k=0 we put 1 (L)k=c
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Case 2: If p<O0, the set of characteristic values in —-1—](214)4—3, 0]
1(L)

is finite and there exist a regular value of (L, 4) in (0, v —c

Obviously this assertion can be reduced to case 1 by considering (L, — A4)
and —p.
Both cases give the conclusion of Lemma 2.

Lemma 3: Let (H1) and (H 2) be satisfied, and assume that
E(_1<L) 1<L>)
" Tk
a bifurcation point for (L, N).

is not a characteristic value of (L, A). Then (u, 0) is not

Proof: (H2) implies that A is the Fréchet derivate of N in 0. There-
fore 4 is a k-set-contraction according to [16]. Hence L— wd is a Fredholm
operator with index 0[7], so L—uA is bijective, because p is not characteristic
value of (L, A). Then there exists an m>0 with: ||(L—uAd)x|>m| x| for
xE D(L). On the other hand there is an open ball K with center 0 and a

n 1

m
ce( - ——) with ||Bx||<c| x| for x & K. Set 3: —f—f—(ﬁ——]p,[c).
2(| ]+ [ 4] +e
Then we have for A\€R with |[A—p <8 and xEK:
|Lx—ANx||=||Lx—AAx —ABx||=|| Lx —p Ax— (A—p) Ax—

—ABx| >m| x| - A—p| | 4][[[x[|=C(p|[+Ocfx]>

> m=3 (|| 4]+ o)~ [wle) [ x] =]l

So p is not a bifurcation point.
1

We set E: =R x X, equipped with the norm | (%, x)||: —(]l| + | x]|»?
and T to be the closure of {(%, x)| (A, x)EE. x£0. Lx=ANx} in E. We state:

Lemma 4: Assume that (H1) and (H?2) are satisfied, and that p is an

(—1%)—, l%l) If o denotes the
component of T U{(w. 0)} in E with (n. 0)&, suppose that ¢ fulfilles: ¢ is
bounded, ¢ contains only u. as a characteristic value of (L, A) and

inf{\ul—%l{

isolated characteristic value of (L, A) in

*, x)ecp}>0.

Then there are a bounded, open subset 0 of (—L—;Ll 15{”) xX, a p>0 and
an >0 with:

(1) 9C0.

2) T'No0=go

_— 1
3) pr, (O)Q(—-%, 1(—;)), where pr,: E—>R is the projection on R,
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4) A x)E0 and [ A—u| >p imply || x]|>n
(3) AEw and NE[—p+p, p+p] imply A regular.

The proof of this Lemma follows the argument used in [20] to prove
Lemma 1.7. We note that Lemma 2 ensures the finiteness of the set of charac-

1) l(ﬁ)
k

teristic values in each compact subset of (—7—, , and that Lemma 3

has to be used instead of proposition [.5. there. Using the fact, that for a
sequence (A,, x, )& (R x X)V with Lx,=2,Nx, holds:

Y<{xn|nem)<%)w{m MEND =~ (1, N3, | nENY)

1(L)
the compactness of a closed, bounded subset of I' can be deduced like there.
If (;.E(—liﬁ, I—ECL—)) is an isolated characteristic value of (L, 4), one

observes that i[(L, AN), 0] is defined for 0<<|x—p| <3 and § sufficient small
in regard to Lemma 3. Now we can :tate the Rabinowitz alternative in the
here considered case:

Theorem 1: Let (HI) and (H2) be satisfied, and

o0, 1

k k

be an isolated charateristic value. ¢, I' are defined as in Lemma 4.

If lim i[(L,2N), 0] lim i[(L, % N), 0],
+

A—>u—
then one of the following assertions holds:

(i) @ is unbounded.
(i) @ meets (., 0) with p#u,

(iii) mf{’ki —{l(l )E(p}

The proof is analogous to the corresponding in [19] and [20]. We indicate it:

If ¢ does not satisfy (i)— (iii), assertions (1) —(5) of Lemma 4 hold.
Define;

%inf {€|€>0, there is an x& D(L) with:

r(y: = Lx=ANx and || x||=C, if A& [w—p, u+p]

1 .
PR if AER\[u—p, p+p]
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For each £>0 there exists an >0 with: r(A\)>a for 2ER\[pn—¢, p+¢]. Let
0,:={x|x€X, A\ x)€0} and K,g: ={x|x=X, | x||<r(»)}, then for A#p
D[(L, A\N), O K,p] is defined. Choose c¢<R™*, such that

C<‘1—(i) and O;i;c: g.

Using Lemma 1 D[(L, AN), O,\ K,»] is constant for Ac=[A, ¢] and p<A<e.
Hence DI[(L, AN), O,N\K,n»l=0 for A&(w, c). The same assertion holds
for A& —(c, ). On the other hand D[(L, AN), O,] is defined for
AE[w—3, w+8] and § sufficient smali, and is constant, using Lemma 1. Now

property (2) of the coincidence degree involves that D[(L, AN), ]%,m] is cons-
tant for A=y and A&[pw— 3, w+3]. Hence: lim i[(L,AN), 0]= lim i[(L, AN),O0].
A—p— A—pt

Remarks:

(1) An example for computing the coincidence index of (L, AN) near an
isolated characteristic value without using the multiplicity of (L, A 4),
can be found in [12]. .

(2) In applications (e. g. Lyapunovs integral power series [9]) it is possible
that one has to restrict the nonlinearity N on a subset of X, to get
a suitable k-set-contraction. The following assertion holds in this case:
Let the assumptions of Theorem 1 be satisfied. but D (N)=Q, where
Q is an open subset of X with QN D(L)# @, then ¢ fulfills one of
the assertion (i)—(iii) in Theorem 1, or there is an (A, x) S ¢ with
xXE0Q

4. The case of odd multiplicity

We introduce the concept of multiplicity of a characteristic value of (L, 4).
given by Laloux and Mawhin [13]. The extension, we need is obvious.

In addition to (H 1) and (H2) we assume;
(H3) Ax¢R(L) for x & Ker(L)\ {0}.

Then there exists a unique projector Q,:Y—Y with R(Q ) =4 (Ker (L))
and Ker (Q,) = R (L). For each continuous projector P: X— X with R (P)=Ker (L)
the set of nonzero characteristic values for (L, A) is equal to the set of charac-

teristic values of (7, K,), where Kp: =Lp'o( —Q,)oA. Using results of Ambro-
_lw) 1)

k' ok )
For

setti [1], we obtain, that the characteristic values of (L, 4) in (

are at most countable with possible accumulation points —l—(kQ or I—(—Q

‘i 1 .
a nonzero characteristic value 7\6(—1—(]5—), w(kL—)) of (L, A), 2K, is an o-set
-contraction with «<<1 and therefore lim dim (Ker (/—2K,)) is finite.

Hence we can define:
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Definition 3: Let (H1)—(H3) be satisfied and K, be defined like

above. If XE(—I—(kLl, —lLkL—)> is a characteristic value of (L, 4) we call

lim dim (Ker (/-2 Kp)’) for A0
y(): =] o=
dim (Ker (L)) for A=0

the multiplicity for A of (L, A).

Remark: In the case where X=Y and L=1, v() is equal to the clas-
sical definition of multiplicity of A A.

Using this Definition and following the arguments of the proofs to Theo-
rem 5.1 and Corollary 5.1 in [13] we can state:

Lemma 5 Let (HI)—(H3) be fulfilled and u,, MZE(—L(;IQ), lch))
be regular values of (L, A) with p,<u,. Setting 8: = 2, v(N), where A is the set

AcA
of characteristic values of (L. A) in (u,, p,), we have

l[(La P*ZA)a 0]:(_ 1)6 l[(L7 391 A)’ 0]

Concerning the proof of this Lemma we have to comment the derivation of
the here needed assertion analogous to formula 5.2 in [I3]. A correct proof
of a product theorem for the Nussbaum degree is unkown to us. But for linear
maps one can follow the proof, given by Fenske [4] for the corresponding
theorem in his degree theory, using Stuart’s and Toland’s result [21], concerning
the connection between classical multiplicity and fixed point index of a linear
a-set-contraction with a<C1. Finally the separability assumption in [4] can be
dropped in view of the following fact. If X is a Banach space and T:X—> X
is a linear a-set-contraction with O<<a< 1, then I—T is a Fredholm map with
index 0, hence I—T surjective, if injective. Therefore each x<&X is regular
concerning I— T and one does not need the Smale-Sard-Theorem. We also re-
fer to the remarks in [3].

Using this Lemma we obtain an analogy to Rabinowitz’s results for the
case of odd multiplicity.

Theorem 2: Let (H1)—(H3) be satisfied and “E(—L%)’ l(kL)) bé i

characteristic value of (L, A) with odd multiplicity. Then the alternative assertion of

Theorem 1 is true.

W 1w
Tk

Lemma 3 implies, that there exists an p,>0, such that Lx#ANx for each
x& D(L) with O0<]| x||<p,. Using (H2), we can further assume, that

Proof: Let 7\6(—— ) be a regular value of (L, A). Then

|| Bx Hﬁﬁ‘ﬂ:}) x]| for ||x[[<pq,
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where m>0 with: |[(L—x4) x| >m
Let p&(0, pp) and set:

X

| for x& D (L) (see proof to Theorem 3).

N(t, x): =t ANx+(1—£)n Adx

for +t€[0, 1] and xEK,:={z]|zCX, ||z||<e}N is a «-set-contraction with
«=|A|k<1(L). Further x&0K,ND(L) involves:

|Lx—N(t, x)||=| Lx— 2 Nx—(1 — 1)\ dx |

Zmllx|—1]x] li== x|

_m
2((x|+1)

Hence N is an admissible homotopy and therefore

D,[(L, AN), K]=D,[(L, 1 A), K]

for J:Ker(L)—~R(Q,) a linear isomorphism and for any p&(0, p,) (property
(3) of the coincidence degree). Now Lemma 5 and Theorem 1 imply the asser-
tion of this Theorem.

Remarks:

(1) The special case X=Y, L=1I is proven by Stuart in [20].

(2) The corresponding result to remark (2) after Theorem 1 is valid.

S. An application to a functional differential equation of neutral type.

In this section we reduce a nonlinear boundary value problem for a func-
tional differential equation of neutral type to an eigenvalue problem of a linear
functional integral equation, using Theorem 2.

First we introduce some notations; Let n<N, s&Z+ and [+] a norm on
R”, then C*([0, 1], R") denotes the Banach space of s-times continuously diffe-
rentiable R7-valued functions with domain [0, 1]. We set;

|t ]|: =max{|u(x)| | x&[0, 1]} for u=C° ([0, 11, R7),
|y =max {||u?]|,|0<j<s} for u&CE ([0, 1], RY),

and assume || ||, to be the norm on C*([0, 1], R7).
For 5:[0, 1] [0, 11" and u<C°([0, 1], R) we set:

uog: =(Uoc,,..., Uog,),

where o,,..., 6, denote the components of o.

Now we can state the problem we will consider here. Let

pECI(0, 1L, R), mEN, a=(a,,..., a,)CR" with S 4,40,
=1

J
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6=(cy,...,6,)EC(0, 1], R) with &, (x)=x for x£[0, 1] and R(s)C0, 1]
for 2<j<m, and f&C([0, 1}1xR>, R). We seek A€R and ucC?([0, 1], R)
with:

(BVP) { (p () ' (x)) ={[ra, uos (x)) +f(x, uos(x), u'os (%), o6 (x))]

u(O)y=u(l), v 0)=u'(1)

where ¢, > denotes the euclidian scalar product of the R™. We obtain:

Theorem 3: Suppose that p, m, a. ¢ and f satisfy the above described
assumptions, and that p,: =min{p (x)| x<[0, 11}>>0 Further assume:

(1) There is a k&R* with: ~
LF 0 Cis Gos G =10, 8§15 G B | <K 85—
for x€[0, 1], §;5..., L,ER™

@) F( %5 8, 8 is o (18| +] G, [+] &) for
1G4+, |+]% | =0 uniformly on [0, 1]

(3) Let h,(x,2): =f—1— dy for z, x&[0, 1] and
p(¥)

1 x 1

1 y y
hy(x,2): = — f—ud ~f——d+ f——d
% * p(y) d () yesE p() Y

z 0 0

for z, x&[0, 1]. We assume, that there is a XOE(—%, %) with: &, is an

eigenvalue with odd dimensional generalized eigenspace of the linear Volterra-
Hammerstein integral equation:

X 1
o | PO b 2)(a, uoc (2)ydz+\ [ hy(x,2)(a,uoc(z)ydz
0 0

ucC* ([0, 1], R"); u (0)=u (1), u' (0) =’ (1)

Then there exists a continuum ¢CR x C2([0, 1], R] of solutions of (BVP) with
(Ay» 0)E @, which satisfies one of the following assertions:

(i) @ is unbounded.

(i) There exists a further eigenvalue )\16(——%, %) with M Eo

(iii) inf{\li f;-f

o, u)ECP}»—O
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Proof: We establish the hypothesis of Theorem 2. Set

X:={ulucC* ([0, 1], R), u(Q)=u(1), v’ (0)=u' (D}, Y:=C°([0, I, R D),

and assume, that || ||, respectively || |l are the norms on X respectively Y.

Let L:X—Y be defined by: Lu:=(pu'). We claim, that L is a Fredholm

operator with index 0. Obviously L is continuous and Ker(L)={u|uE X, u is
1

constant} is one dimensional. Let v&Y and fv(x) dx=0, then we set
0

u(x): =(f(pz—”jv(z)dz>dy—x6/1<;:;ofyv(z)dz)dy.

Obviously ucX and Lu=v. On the other hand, if v= Lu (uE X), then
1
#' (0)=u' (1) implies: f v(x)dx=0. Hence R (L)= { vEY, f v(x) dx= 0} and

therefore dim (Y/R (L))— 1. So L is a Fredholm operator w1th index 0. Further,

following the arguments in the proof to ,Satz 8 in [7], we obtain: 1(L)> p,.

Define A:X—Y by: Au(x): ={a, uoas(x))>. A4 is completely continuous
m

(Arzela-Ascoli). Since 3 a;#0 for ucKer (L), u#0. B: X—7Y is defined by:

=1
Bu(x): =f(x, uos (x), u'os(x), u”os(x)), x&[0, 1].

Since f is uniformly continuous on bounded sets of Rx R and o is conti-
nuous, B is a continuous operator, In regard to assumption (1) we deduce
analoguosly to Theorem 3 in [6], that B is a k-set-contraction. From assump-
tion (2) we receive:

|| Bu [l _ im  su |f(x, uos (x), ' o6 (x), 4" 06 (x))] _0
lulla=0 ||u]l, lull>0 xcp0,1] |[u]l,

Therefore N: =A+B is a Fréchet-differentiable map in 0 with derivate A.

For applying Theorem 2 we have to show, that 2, is a characteristic
value of (L, A) with odd multiplicity. We set P: X— X by Pu(x): =u(0) and
1

Q: Y=Y by Qv(x): :fv(x) dx. P is a continuous projector on Ker (L) and
0
L7':Ker (Q)— K(P) is given by

! y

L;lv(x)=f(;%ﬁjv(z)dz)dy—xf(ﬁfv(z)dz)dy

0 0
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Q satisfies the conditions Ker(Q)=R(L) and R(Q)=A(Ker (L)) and is there-

fore the projector Q, of Section 4. We determine KA=L;10(I —Q)od: For
uC X we have, after changing the order of integration:

X x

KAu(x)zaf(fFIy)dy)(a,u(z))dz—

z

—x(f(j;%y—)dy)(a, uos (2))dz—
1 x

—[f(a,uoc(z)>dz][6f;g;—)dy]+

0

1

1
Ld][ tiog d]
+x[fp(y) 'y 0f<a uoc(z) >dz

0

x 1
= fh1 (x, 2){a, uec(z)ydz+ fhz(x, z){a, uoc(z),dz
0 0

This implies, that the eigenvalue problem u=AK,u 1is equivalent to problem
(I). Hence assumption (3) ensures, that A, is a characteristic value of (I, K,)
of odd multiplicity, thus for (L, 4). Therefore all hypotheses of Theorem 2
are satisfied.

Remarks:

()

3

C))

Problem (I) leads to a linear operator equation of the form I=2x(V+ ),
where C is an operator with finite dimensional range. Corresponding
to the case of a Volterra equation, /—AV is injective and therefore
a linear isomorphism. Hence we can reduce (I) to an operator equation
of the form x=AT()x, where T(A\)=I—Aa¥)"1°C is an operator
with finite dimensional range.

A second order functional differential equation of neutral type with-
out parameter A and with other boundary conditions is considered
in [8]. In the here considered case o;([0, IDC[O, 1] for 2<j<m
can be assumed without loss of generality.

For convenience we have supposed that g is constant, and that the
linear part is independent of »”. Equations without these restrictions
can be treated analogously.

For sufficient large a and suitable o;(2<(j<(m) there exists an

. Dy Po
eigenvalue A, & ——, *>
g 0 ( ok
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