COINCIDENCE DEGREE AND RABINOWITZ'S BIFURCATION THEOREM

G. Hetzer and V. Stallbohm

(Received May 30, 1975)

1. Introduction

In [17] Rabinowitz investigates the structure of solutions of a nonlinear eigenvalue problem of the form $x = G(\lambda, x)$ where $G: \mathbb{R} \times X \to X$ is a completely continuous, in 0 Fréchet-differentiable operator and X a Banach space. He demonstrates the existence of continua of solutions and gives an alternative description of them. Applications are given to nonlinear Sturm-Liouville problems for second-order ordinary differential equations, to nonlinear eigenvalue problems for a class of quasilinear elliptic partial differential equations on bounded domains in \mathbb{R}^n , and to Hammerstein integral equations with oscillation kernels ([17], [18], [19]).

In dealing with differential equations on unbounded domains the assumption of a completely continuous nonlinearity has to be relaxed. Thus Stuart [10] considers the operator equation $x = \lambda Nx$, where $N: X \rightarrow X$ is a k-set-contraction.

On the other hand the study of nonlinear Steklov problems leads Stuart and Toland [22] to an extension of Rabinowitz's result to the case, where the derivate of G has the form $A_1 + \lambda A_2$.

In his thesis Laloux [10] shows, that some technical assumptions which Stuart and Toland had to suppose, can be avoided by using an extension of Rabinowitz's result for a bifurcation equation $Lx = N(\lambda, x)$, where X, Y are Banach spaces, $L: X \supseteq D(L) \to Y$ is a Fredholm operator with index 0 and $N: X \to Y$ is completely continuous. Some other applications are also given.

In proving their alternative results Rabinowitz and Stuart use the Leray-Schauder respectively the Nussbaum degree. The extension, given by Laloux, is based on a coincidence degree for completely continuous nonlinearities, established by J. Mawhin in [14]. Using coincidence degree for k-set-contractions [5], we derive Stuart's result for operator equations $Lx = \lambda Nx$, where L is like above, but N is a k-set-contraction (Section 3. and 4.).

In Section 5. we reduce as an application a boundary value problem for a nonlinear functional differential equation of neutral type to an eigenvalue problem for a linear functional integral equation. In Section 2, we collect some later needed definitions and results.

2. Preliminaries

Let X be a real Banach space. The set-measure of noncompactness γ of a subset M of X is defined by:

 $\gamma(M)$: = inf $\{\varepsilon \mid \varepsilon > 0$, there exists a finite covering of M by subsets of X with diameter lower than ε .

Assume that Y is a further real Banach space, $\Omega \subseteq X$ and $k \in \mathbb{R}^+$, then a continuous function $f: \Omega \to Y$ is called k-set-contraction, if $\gamma(f(M)) \le k\gamma(M)$ for each bounded subset M of Ω . Usually a 0-set-contraction is said to be completely continuous (compact). We introduce the following notation: D(f) means the domain of f, R(f) the range of f. If $L: X \supseteq D(L) \to Y$ is a linear operator, Ker(L) denotes the null space of L, and we set:

$$\alpha(L)$$
: = dim (Ker (L)), $\beta(L)$: = dim (Y/R(L)),

where $\alpha(L) = \infty$ respectively $\beta(L) = \infty$ in the infinite dimensional case:

L is called a Φ_+ -operator, if L is closed, R(L) is closed, and $\alpha(L) < \infty$, and a Fredholm operator, if additionally $\beta(L) < \infty$. If L is a Fredholm operator, ind $(L) := \alpha(L) - \beta(L)$ means the (Fredholm-) index of L. Further we set:

$$1(L)$$
: = sup $\{r \mid r \in \mathbb{R}^+, r\gamma(M) \le \gamma(L(M)) \text{ for each bounded } M \subseteq D(L)\}$

In [5] is shown that for a closed operator L, 1(L)>0, if and only if L is a Φ_+ -operator. Basic for the sequel is the concept of coincidence degree, given in [5]. We sketch the here needed case; we assume:

- (a) X, Y are Banach spaces, $L: X \supseteq D(L) \rightarrow Y$ is a Fredholm operator, and ind (L) = 0.
- (b) $\Omega \subseteq X$ is open and bounded, $\Omega \cap D(L) \neq \Phi$, $N: \overline{\Omega} \to Y$ is a k-set-contraction with $0 \le k < 1$ (L).
- (c) $Lx \neq Nx$ for $x \in \partial \Omega \cap D(L)$, where $\partial \Omega$ denotes the boundary of Ω .

From (a) we deduce the existence of continuous projectors $P: X \to X$, $Q: Y \to Y$ with $R(P) = \operatorname{Ker}(L)$ and $\operatorname{Ker}(Q) = R(L)$, and of a linear isomorphism $J: R(Q) \to R(P)$. Further we set $L_P: = L \mid \operatorname{Ker}(P) \cap D(L)$ and remark that L_P^{-1} is continuous according to (a). Finally let $M_I: \overline{\Omega} \to X$ be defined by:

$$M_J: = P + J \circ Q \circ N + L_P^{-1} \circ (I - Q) \circ N$$

then M_J is a k/1(L)-set-contraction and $0 \oplus (I - M_J)(\partial \Omega)$, since (b) and (c) are satisfied. Therefore we can define the coincidence degree of (L, N) by:

$$D_J[(L, N), \Omega]$$
: = deg $(I - M_J, \Omega, 0)$

where deg denotes the degree for k-set-contractions with $0 \le k < 1$, [15]. $D_J[(L, N), \Omega]$ is independent of P and Q and has the following properties;

(1) $D_I[(L, N), \Omega] \neq 0$ implies that there exists an

$$x \in \Omega \cap D(L)$$
 with $Lx = Nx$.

- (2) If Ω_1 , Ω_2 are open subsets of Ω with $\Omega_1 \cap \Omega_2 = \emptyset$ and $\{x \mid x \in \Omega \cap D(L), Lx = Nx\} \subseteq \Omega_1 \cup \Omega_2$, then: $D_I[(L, N), \Omega] = D_I[(L, N), \Omega_1] + D_I[(L, N), \Omega_2].$
- (3) If $\tilde{N}: [0, 1] \times \overline{\Omega} \to Y$ is a k-set-contraction with $Lx \neq \tilde{N}(\lambda, x)$ for each $x \in \partial\Omega \cap D(L)$ and $\lambda \in [0, 1]$, then $D_I[(L, \tilde{N}(0, \circ)), \Omega] = D_I[(L, N(1, \circ)), \Omega]$.

For convenience we set: $D[(L, N), \Phi] = 0$. Then one obtains the following, later needed homotopy property from proposition 7 in [15]:

Lemma 1: Assume that (a) is satisfied, I is a compact interval in \mathbf{R} and $\Phi \neq \Omega \subseteq I \times X$ is open and bounded in $\mathbf{R} \times X$ with $pr_2(\Omega) \cap D(L) \neq \Phi$, where $pr_2 \colon \mathbf{R} \times X \to X$ denotes the projection on X. Let $F \colon \Omega \to Y$ be continuous and $k \in [0, 1(L))$ with: $\gamma(F(B)) \leq k\gamma(pr_2(B))$ for each $B \subseteq \Omega$. Furthermore set $\Omega_t \colon = \{x \mid (t, x) \in \Omega\}$ for $t \in I$. Then $D[(L, F(t, \circ)), \Omega_t]$ is independent of $t \in I$, provided that $Lx \neq F(t, x)$ for all $(t, x) \in \partial \Omega \cap D(L)$.

We end this section with the definition of a coincidence index. Assume that (a) and (b) hold, but Ω is not necessary bounded, and that $x \in \Omega \cap D(L)$ is an isolated coincidence point of (L, N). For each $B_{\rho} := \{x \mid x \in X, \|x - \overline{x}\| \le \rho\}$ with $Lx \neq Nx$ for each $x \neq x \in B_{\rho} \cap D(L)D[(L, N), B_{\rho}]$ is defined and independent of ρ . Therefore we can define the coincidence index by:

$$i[(L, N), \overline{x}] := D[(L, N), \overset{\circ}{B_0}]$$

Additivity and homotopy property can be deduced, using the corresponding assertions for the coincidence degree.

3. Rabinowitz's Theorem for (L, N)

We recall the following definitions:

Definition 1: Let X, Y be Banach spaces, and $L: X \supseteq D(L) \to Y$ and $A: X \to Y$ be linear, then $\lambda \in \mathbf{R}$ is called a characteristic value of (L, A), if $\operatorname{Ker}(L - \lambda A) \neq \{0\}$, otherwise regular.

Definition 2: Let X, Y be Banach spaces, $L: X \supseteq D(L) \to Y$ be linear, and $N: \mathbb{R} \times X \to Y$ continuous with $N(\lambda, 0) = 0$ for each $\lambda \in \mathbb{R}$, then $(\mu, 0)$ is called a bifurcation point, if for every $\varepsilon > 0$ there exists $(\lambda, x) \in \mathbb{R} \times X$ with: $|\lambda - \mu| < \varepsilon$, $0 < ||x|| < \varepsilon$, and $Lx = N(\lambda, x)$.

In the sequel we suppose:

(H1) X, Y are Banach spaces over \mathbb{R} , $L: X \supseteq D(L) \rightarrow Y$ is a Fredholm operator with ind (L) = 0.

(H2) $N: X \to Y$ is a k-set-contraction with $k \in [0, 1(L)]$,

 $A, B: X \rightarrow Y$ are continuous maps with:

A linear,
$$\lim_{\|x\|\to 0} \frac{\|Bx\|}{\|x\|} = 0$$
, and $N = A + B$.

Under these assumptions we consider the bifurcation problem $Lx = \lambda Nx$. The restriction, concerning λ in regard to [17], [18] and [11], is caused by the fact, that the contraction constant is dependent on λ in contrast to the case, where N is compact.

We need the following assertions:

Lemma 2: Let (H1) be satisfied, $A: X \to Y$ be a linear k-set-contraction with $k \in [0, 1(L))$, and $\mu \in \left(-\frac{1(L)}{k}, \frac{1(L)}{k}\right)^{1}$ be regular. Then the set of characteristic values in each compact subinterval of $\left(-\frac{1(L)}{k}, \frac{1(L)}{k}\right)$ is finite.

Proof: The case k=0 (i.e. A is completely continuous) is proven in [13]. Hence assume $k\in(0, 1(L))$. Since μ is regular, $L-\mu A$ is injective. Therefore $\lambda\in\mathbf{R}$ is a characteristic value of (L,A), if and only if λ is a characteristic value of

$$(L - \mu A)^{-1} \circ (L - \lambda A) = I - (\lambda - \mu) (L - \mu A)^{-1} \circ A.$$

Now assume that $\varepsilon > 0$ is sufficiently small. We show:

Case 1: If $\mu > 0$, the set of characteristic values in $\left[0, \frac{1(L)}{k} - \varepsilon\right]$ is finite, and there is a regular value of (L, A) in $\left[-\frac{1(L)}{k} + \varepsilon, 0\right]$. Since $1(L - \mu A) > 1(L) - \mu k$ ([5] Theorem 2), $T := \left(\frac{1(L)}{k} - \varepsilon - \mu\right)(L - \mu A)^{-1} \circ A$ is an α -set-contraction with $\alpha = \left(\frac{1(L)}{k} - \varepsilon - \mu\right)k\left(1(L) - \mu k\right)^{-1} < 1$. Using [1] Theorem 12, we obtain: The set of characteristic values in [-1, 1] of (I, T) is finite, hence the set of (L, A) in $\left[-\frac{1(L)}{k} + \varepsilon + 2\mu, \frac{1(L)}{k} - \varepsilon\right]$. If $-2\mu > -\frac{1(L)}{k} + \varepsilon$, case 1 is proved. Otherwise we choose a regular value μ_1 with; $\mu_1 < \mu - \frac{1}{2}\left(\frac{1(L)}{k} - \varepsilon - \mu\right) = -\frac{1}{2}\left(\frac{1(L)}{k} - \varepsilon - 3\mu\right)$, and repeat the above described process. Then we receive: (L, A) has only a finite number of characteristic values in $\left[-\frac{1(L)}{k} + \varepsilon + 2\mu_1, \frac{1(L)}{k} - \varepsilon\right]$. Since $-\frac{1(L)}{k} + \varepsilon + 2\mu - \left(-\frac{1(L)}{k} + \varepsilon + 2\mu_1\right) > \frac{1(L)}{k} - \varepsilon - \mu > 0$ we obtain case 1 after a finite number of steps.

¹⁾ For k=0 we put $1(L)/k=\infty$

Case 2: If $\mu \le 0$, the set of characteristic values in $\left[-\frac{1(L)}{k} + \varepsilon, 0 \right]$ is finite and there exist a regular value of (L, A) in $\left(0, \frac{1(L)}{k} - \varepsilon \right]$.

Obviously this assertion can be reduced to case 1 by considering (L, -A) and $-\mu$.

Both cases give the conclusion of Lemma 2.

Lemma 3: Let $(H\ 1)$ and $(H\ 2)$ be satisfied, and assume that $\mu\in\left(-\frac{1}{k},\frac{1}{k}\right)$ is not a characteristic value of (L,A). Then $(\mu,0)$ is not a bifurcation point for (L,N).

Proof: (H2) implies that A is the Fréchet derivate of N in 0. Therefore A is a k-set-contraction according to [16]. Hence $L-\mu A$ is a Fredholm operator with index 0[7], so $L-\mu A$ is bijective, because μ is not characteristic value of (L,A). Then there exists an m>0 with: $\|(L-\mu A)x\|>m\|x\|$ for $x\in D(L)$. On the other hand there is an open ball K with center 0 and a $c\in \left(0,\frac{m}{2(|\mu|+1)}\right)$ with $\|Bx\|\leqslant c\|x\|$ for $x\in K$. Set $\delta:=\frac{1}{\|A\|+c}\left(\frac{m}{2}-|\mu|c\right)$. Then we have for $\lambda\in \mathbf{R}$ with $|\lambda-\mu|\leqslant \delta$ and $x\in K$:

$$|| Lx - \lambda Nx || = || Lx - \lambda Ax - \lambda Bx || = || Lx - \mu Ax - (\lambda - \mu) Ax - \lambda Bx || > m || x || - |\lambda - \mu| || A || || x || - (|\mu| + \delta) c || x || >$$

$$\geq (m - \delta) (|| A || + c) - |\mu| c || x || = \frac{m}{2} || x ||.$$

So μ is not a bifurcation point.

We set $E: = \mathbb{R} \times X$, equipped with the norm $\|(\lambda, x)\| : = (|\lambda|^2 + \|x\|^2)^{\frac{1}{2}}$ and Γ to be the closure of $\{(\lambda, x) | (\lambda, x) \in E. \ x \neq 0. \ Lx = \lambda Nx\}$ in E. We state:

Lemma 4: Assume that (H1) and (H2) are satisfied, and that μ is an isolated characteristic value of (L, A) in $\left(-\frac{1}{k}, \frac{1}{k}, \frac{1}{k}\right)$. If ϕ denotes the component of $\Gamma \cup \{(\mu, 0)\}$ in E with $(\mu, 0) \in \phi$, suppose that ϕ fulfilles: ϕ is bounded, ϕ contains only μ as a characteristic value of (L, A) and

$$\inf\left\{\left|\lambda\pm\frac{1\,(L)}{k}\right|\left|(\lambda,x)\in\varphi\right\}>0.\right.$$

Then there are a bounded, open subset 0 of $\left(-\frac{1(L)}{k}, \frac{1(L)}{k}\right) \times X$, a > 0 and an $\eta > 0$ with:

- $(1) \ \phi \subseteq 0.$
- (2) $\Gamma \cap \partial 0 = \emptyset$

(3)
$$\overline{pr_1(0)} \subseteq \left(-\frac{1}{k}, \frac{1}{k}, \frac{1}{k}\right)$$
, where $pr_1: E \to \mathbb{R}$ is the projection on \mathbb{R} ,

(4)
$$(\lambda, x) \in 0$$
 and $|\lambda - \mu| \ge \rho$ imply $||x|| \ge \eta$

(5)
$$\lambda \neq \mu$$
 and $\lambda \in [-\rho + \mu, \rho + \mu]$ imply λ regular.

The proof of this Lemma follows the argument used in [20] to prove Lemma 1.7. We note that Lemma 2 ensures the finiteness of the set of characteristic values in each compact subset of $\left(-\frac{1}{k}, \frac{1}{k}, \frac{1}{k}\right)$, and that Lemma 3 has to be used instead of proposition 1.5. there. Using the fact, that for a sequence $(\lambda_n, x_n) \in (\mathbb{R} \times X)^N$ with $Lx_n = \lambda_n Nx_n$ holds:

$$\gamma\left(\left\{x_{n} \mid n \in \mathbf{N}\right\}\right) \leq \frac{1}{1\left(L\right)} \gamma\left(\left\{Lx_{n} \mid n \in \mathbf{N}\right\}\right) = \frac{1}{1\left(L\right)} \gamma\left(\left\{\lambda_{n} Nx_{n} \mid n \in \mathbf{N}\right\}\right)$$

the compactness of a closed, bounded subset of Γ can be deduced like there.

If $\mu \in \left(-\frac{1}{k}, \frac{1}{k}, \frac{1}{k}\right)$ is an isolated characteristic value of (L, A), one observes that $i[(L, \lambda N), 0]$ is defined for $0 < |\lambda - \mu| < \delta$ and δ sufficient small in regard to Lemma 3. Now we can state the Rabinowitz alternative in the here considered case:

Theorem 1: Let (H1) and (H2) be satisfied, and

$$\mu \in \left(-\frac{1(L)}{k}, \frac{1(L)}{k}\right)$$

be an isolated charateristic value, φ , Γ are defined as in Lemma 4.

If
$$\lim_{\lambda \to \mu -} i[(L, \lambda N), 0] \neq \lim_{\lambda \to \mu +} i[(L, \lambda N), 0],$$

then one of the following assertions holds:

- (i) φ is unbounded.
- (ii) φ meets $(\tilde{\mu}, 0)$ with $\tilde{\mu} \neq \mu$,

(iii)
$$\inf \left\{ \left| \lambda \pm \frac{1(L)}{k} \right| \middle| (\lambda, x) \in \varphi \right\} = 0.$$

The proof is analogous to the corresponding in [19] and [20]. We indicate it: If φ does not satisfy (i) – (iii), assertions (1) – (5) of Lemma 4 hold. Define;

$$r(\lambda) := \begin{cases} \frac{1}{2} \inf \left\{ \zeta \mid \zeta > 0, \text{ there is an } x \in D(L) \text{ with:} \\ Lx = \lambda Nx \text{ and } ||x|| = \zeta, \text{ if } \lambda \in [\mu - \rho, \mu + \rho] \\ \frac{1}{2} \eta, \text{ if } \lambda \in \mathbb{R} \setminus [\mu - \rho, \mu + \rho] \end{cases}$$

For each $\varepsilon > 0$ there exists an a > 0 with: $r(\lambda) > a$ for $\lambda \in \mathbb{R} \setminus [\mu - \varepsilon, \mu + \varepsilon]$. Let $O_{\lambda} := \{x \mid x \in X, (\lambda, x) \in 0\}$ and $K_{r(\lambda)} := \{x \mid x \in X, \|x\| \le r(\lambda)\}$, then for $\lambda \neq \mu$ $D[(L, \lambda N), O_{\lambda} \setminus K_{r(\lambda)}]$ is defined. Choose $c \in \mathbb{R}^+$, such that

$$c < \frac{1(L)}{k}$$
 and $O_{\pm c} = \varnothing$.

Using Lemma 1 $D[(L, \lambda N), O_{\lambda} \setminus K_{r(\lambda)}]$ is constant for $\lambda \in [\Lambda, c]$ and $\mu < \Lambda < c$. Hence $D[(L, \lambda N), O_{\lambda} \setminus K_{r(\lambda)}] = 0$ for $\lambda \in (\mu, c)$. The same assertion holds for $\lambda \in -(c, \mu)$. On the other hand $D[(L, \lambda N), O_{\lambda}]$ is defined for $\lambda \in [\mu - \delta, \mu + \delta]$ and δ sufficient small, and is constant, using Lemma 1. Now property (2) of the coincidence degree involves that $D[(L, \lambda N), K_{r(\lambda)}]$ is constant for $\lambda \neq \mu$ and $\lambda \in [\mu - \delta, \mu + \delta]$. Hence: $\lim_{\lambda \to \mu -} i[(L, \lambda N), 0] = \lim_{\lambda \to \mu +} i[(L, \lambda N), 0]$.

Remarks:

- (1) An example for computing the coincidence index of $(L, \lambda N)$ near an isolated characteristic value without using the multiplicity of $(L, \lambda A)$, can be found in [12].
- (2) In applications (e. g. Lyapunovs integral power series [9]) it is possible that one has to restrict the nonlinearity N on a subset of X, to get a suitable k-set-contraction. The following assertion holds in this case: Let the assumptions of Theorem 1 be satisfied. but $D(N) = \overline{\Omega}$, where Ω is an open subset of X with $\Omega \cap D(L) \neq \emptyset$, then φ fulfills one of the assertion (i) (iii) in Theorem 1, or there is an $(\lambda, x) \in \varphi$ with $x \in \partial \Omega$

4. The case of odd multiplicity

We introduce the concept of multiplicity of a characteristic value of (L, A), given by Laloux and Mawhin [13]. The extension, we need is obvious.

In addition to (H1) and (H2) we assume;

(H3)
$$Ax \in R(L)$$
 for $x \in \text{Ker}(L) \setminus \{0\}$.

Then there exists a unique projector $Q_A\colon Y\to Y$ with $R(Q_A)=A$ (Ker (L)) and Ker $(Q_A)=R$ (L). For each continuous projector $P\colon X\to X$ with $R(P)=\mathrm{Ker}\,(L)$ the set of nonzero characteristic values for (L,A) is equal to the set of characteristic values of (I,K_P) , where $K_P\colon =L_P^{-1}\circ (I-Q_A)\circ A$. Using results of Ambrosetti [1], we obtain, that the characteristic values of (L,A) in $\left(-\frac{1}{k},\frac{1}{k},\frac{1}{k}\right)$ are at most countable with possible accumulation points $-\frac{1}{k}$ or $\frac{1}{k}$. For a nonzero characteristic value $\lambda\in\left(-\frac{1}{k},\frac{1}{k}\right)$ of (L,A), λK_P is an α -set -contraction with $\alpha<1$ and therefore $\lim_{k\to\infty} \dim(\mathrm{Ker}\,(I-\lambda K_P)^i)$ is finite.

Hence we can define:

Definition 3: Let (H1)-(H3) be satisfied and K_P be defined like above. If $\lambda \in \left(-\frac{1(L)}{k}, \frac{1(L)}{k}\right)$ is a characteristic value of (L, A) we call

$$v(\lambda) := \begin{cases} \lim_{i \to \infty} \dim \left(\operatorname{Ker} (I - \lambda K_P)^i \right) & \text{for } \lambda \neq 0 \\ \dim \left(\operatorname{Ker} (L) \right) & \text{for } \lambda = 0 \end{cases}$$

the multiplicity for λ of (L, A).

Remark: In the case where X = Y and L = I, $v(\lambda)$ is equal to the classical definition of multiplicity of λA .

Using this Definition and following the arguments of the proofs to Theorem 5.1 and Corollary 5.1 in [13] we can state:

Lemma 5: Let (H1)-(H3) be fulfilled and $\mu_1, \mu_2 \in \left(-\frac{1}{k}, \frac{1}{k}, \frac{1}{k}\right)$ be regular values of (L, A) with $\mu_1 < \mu_2$. Setting $\delta := \sum_{\lambda \in \Lambda} v(\lambda)$, where Λ is the set of characteristic values of (L, A) in (μ_1, μ_2) , we have

$$i[(L, \mu, A), 0] = (-1)^{\delta} i[(L, \mu, A), 0].$$

Concerning the proof of this Lemma we have to comment the derivation of the here needed assertion analogous to formula 5.2 in [13]. A correct proof of a product theorem for the Nussbaum degree is unkown to us. But for linear maps one can follow the proof, given by Fenske [4] for the corresponding theorem in his degree theory, using Stuart's and Toland's result [21], concerning the connection between classical multiplicity and fixed point index of a linear α -set-contraction with $\alpha < 1$. Finally the separability assumption in [4] can be dropped in view of the following fact. If X is a Banach space and $T: X \rightarrow X$ is a linear α -set-contraction with $0 \le \alpha < 1$, then I - T is a Fredholm map with index 0, hence I - T surjective, if injective. Therefore each $x \in X$ is regular concerning I - T and one does not need the Smale-Sard-Theorem. We also refer to the remarks in [3].

Using this Lemma we obtain an analogy to Rabinowitz's results for the case of odd multiplicity.

Theorem 2: Let (H1)-(H3) be satisfied and $\mu \in \left(-\frac{1}{k},\frac{1}{k},\frac{1}{k}\right)$ be a characteristic value of (L,A) with odd multiplicity. Then the alternative assertion of Theorem 1 is true.

Proof: Let $\lambda \in \left(-\frac{1}{k}, \frac{1}{k}\right)$ be a regular value of (L, A). Then Lemma 3 implies, that there exists an $\rho_0 > 0$, such that $Lx \neq \lambda Nx$ for each $x \in D(L)$ with $0 < ||x|| \le \rho_0$. Using (H2), we can further assume, that

$$||Bx|| \le \frac{m}{2(|\lambda|+1)} ||x|| \text{ for } ||x|| \le \rho_0,$$

where m>0 with: $\|(L-\lambda A)x\| \ge m\|x\|$ for $x\in D(L)$ (see proof to Theorem 3). Let $\rho\in(0,\,\rho_0)$ and set:

$$\tilde{N}(t, x) := t \lambda Nx + (1-t) \lambda Ax$$

for $t \in [0, 1]$ and $x \in K_{\rho} := \{z \mid z \in X, \|z\| \le \rho\} \tilde{N}$ is a α -set-contraction with $\alpha = |\lambda| k < 1$ (L). Further $x \in \partial K_{\rho} \cap D$ (L) involves:

$$|| Lx - \tilde{N}(t, x) || = || Lx - t \lambda Nx - (1 - t) \lambda Ax ||$$

$$> m || x || - t |\lambda| \frac{m}{2(|\lambda| + 1)} || x || \ge \frac{m}{2} || x ||$$

Hence \tilde{N} is an admissible homotopy and therefore

$$D_J[(L, \lambda N), \stackrel{\circ}{K}_{\rho}] = D_J[(L, \lambda A), \stackrel{\circ}{K}_{\rho}]$$

for $J: \operatorname{Ker}(L) \to R(Q_A)$ a linear isomorphism and for any $\rho \in (0, \rho_0)$ (property (3) of the coincidence degree). Now Lemma 5 and Theorem 1 imply the assertion of this Theorem.

Remarks:

- (1) The special case X = Y, L = I is proven by Stuart in [20].
- (2) The corresponding result to remark (2) after Theorem 1 is valid.

5. An application to a functional differential equation of neutral type.

In this section we reduce a nonlinear boundary value problem for a functional differential equation of neutral type to an eigenvalue problem of a linear functional integral equation, using Theorem 2.

First we introduce some notations; Let $n \in \mathbb{N}$, $s \in \mathbb{Z}^+$ and $|\cdot|$ a norm on \mathbb{R}^n , then $C^s([0, 1], \mathbb{R}^n)$ denotes the Banach space of s-times continuously differentiable \mathbb{R}^n -valued functions with domain [0, 1]. We set;

$$||u||_{\infty} := \max\{|u(x)| \mid x \in [0, 1]\} \text{ for } u \in C^{\circ}([0, 1], \mathbb{R}^{n}),$$

 $||u||_{s} := \max\{||u^{(j)}||_{\infty} \mid 0 \le j \le s\} \text{ for } u \in C^{s}([0, 1], \mathbb{R}^{n}),$

and assume $\| \|_s$ to be the norm on $C^s([0, 1], \mathbb{R}^n)$.

For $\sigma:[0, 1] \rightarrow [0, 1]^n$ and $u \in C^{\circ}([0, 1], \mathbb{R})$ we set:

$$u \circ \sigma := (u \circ \sigma_1, \ldots, u \circ \sigma_n),$$

where $\sigma_1, \ldots, \sigma_n$ denote the components of σ .

Now we can state the problem we will consider here. Let

$$p \in C^1([0, 1], \mathbf{R}), m \in \mathbf{N}, a = (a_1, \dots, a_m) \in \mathbf{R}^m \text{ with } \sum_{j=1}^m a_j \neq 0,$$

 $\sigma = (\sigma_1, \ldots, \sigma_m) \in C([0, 1], \mathbf{R}^m)$ with $\sigma_1(x) = x$ for $x \in [0, 1]$ and $R(\sigma_j) \subseteq [0, 1]$ for $2 \le j \le m$, and $f \in C([0, 1] \times \mathbf{R}^{3m}, \mathbf{R})$. We seek $\lambda \in \mathbf{R}$ and $u \in C^2([0, 1], \mathbf{R})$ with:

$$(BVP) \begin{cases} (p(x)u'(x))' = \langle [\lambda a, u \circ \sigma(x) \rangle + f(x, u \circ \sigma(x), u' \circ \sigma(x), u'' \circ \sigma(x))] \\ u(0) = u(1), u'(0) = u'(1) \end{cases}$$

where \langle , \rangle denotes the euclidian scalar product of the \mathbb{R}^m . We obtain:

Theorem 3: Suppose that p, m, a. σ and f satisfy the above described assumptions, and that $p_0 := \min\{p(x) | x \in [0, 1]\} > 0$ Further assume:

(1) There is a $k \in \mathbb{R}^+$ with:

$$|f(x, \zeta_1, \zeta_2, \zeta_3) - f(x, \zeta_1, \zeta_2, \zeta_4)| \le k |\zeta_3 - \zeta_4|$$

for $x \in [0, 1], \zeta_1, \dots, \zeta_4 \in \mathbb{R}^m$

(2)
$$f(\cdot, \zeta_1, \zeta_2, \zeta_3)$$
 is $o(|\zeta_1| + |\zeta_2| + |\zeta_3|)$ for $|\zeta_1| + |\zeta_2| + |\zeta_3| \rightarrow 0$ uniformly on [0, 1]

(3) Let
$$h_1(x, z) := \int_{z}^{x} \frac{1}{p(y)} dy$$
 for $z, x \in [0, 1]$ and

$$h_2(x, z) := -x \int_{z}^{1} \frac{1}{p(y)} dy - \int_{0}^{x} \frac{y}{p(y)} dy + x \int_{0}^{1} \frac{y}{p(y)} dy$$

for z, $x \in [0, 1]$. We assume, that there is a $\lambda_0 \in \left(-\frac{p_0}{k}, \frac{p_0}{k}\right)$ with: λ_0 is an eigenvalue with odd dimensional generalized eigenspace of the linear Volterra-Hammerstein integral equation:

(I)
$$\begin{cases} u(x) = \lambda \int_{0}^{x} h_{1}(x, z) \langle a, u \circ \sigma(z) \rangle dz + \lambda \int_{0}^{1} h_{2}(x, z) \langle a, u \circ \sigma(z) \rangle dz \\ u \in C^{2}([0, 1], \mathbb{R}^{n}); \ u(0) = u(1), \ u'(0) = u'(1) \end{cases}$$

Then there exists a continuum $\varphi \subseteq \mathbb{R} \times C^2([0, 1], \mathbb{R}]$ of solutions of (BVP) with $(\lambda_0, 0) \in \varphi$, which satisfies one of the following assertions:

(i) φ is unbounded.

(ii) There exists a further eigenvalue
$$\lambda_1 \in \left(-\frac{p_0}{k}, \frac{p_0}{k}\right)$$
 with $\lambda_1 \in \varphi$

(iii)
$$\inf \left\{ \left| \lambda \pm \frac{p_0}{k} \right| \mid (\lambda, u) \in \varphi \right\} = 0$$

Proof: We establish the hypothesis of Theorem 2. Set

$$X:=\{u\,|\,u\in C^2([0,\,1],\,\mathbb{R}),\,u(0)=u(1),\,u'(0)=u'(1)\},\,Y:=C^\circ([0,\,1],\,\mathbb{R}\,\Gamma),\,$$

and assume, that $\| \ \|_2$ respectively $\| \ \|_{\infty}$ are the norms on X respectively Y. Let $L: X \to Y$ be defined by: Lu: = (pu')'. We claim, that L is a Fredholm operator with index 0. Obviously L is continuous and $\operatorname{Ker}(L) = \{u \mid u \in X, u \text{ is constant}\}$ is one dimensional. Let $v \in Y$ and $\int_{0}^{1} v(x) dx = 0$, then we set

$$u(x) := \int_{0}^{x} \left(\frac{1}{p(y)} \int_{0}^{y} v(z) dz\right) dy - x \int_{0}^{1} \left(\frac{1}{p(y)} \int_{0}^{y} v(z) dz\right) dy.$$

Obviously $u \in X$ and Lu = v. On the other hand, if $v = Lu(u \in X)$, then u'(0) = u'(1) implies: $\int_0^v v(x) dx = 0$. Hence $R(L) = \left\{v \mid v \in Y, \int_0^v v(x) dx = 0\right\}$ and therefore $\dim\left(Y/R(L)\right) = 1$. So L is a Fredholm operator with index 0. Further, following the arguments in the proof to "Satz 8" in [7], we obtain: $1(L) \ge p_0$. Define $A: X \to Y$ by: $Au(x) := \langle a, u \circ \sigma(x) \rangle$. A is completely continuous (Arzela-Ascoli). Since $\sum_{j=1}^m a_j \ne 0$ for $u \in \operatorname{Ker}(L), u \ne 0$. $B: X \to Y$ is defined by:

$$Bu(x) := f(x, u \circ \sigma(x), u' \circ \sigma(x), u'' \circ \sigma(x)), x \in [0, 1].$$

Since f is uniformly continuous on bounded sets of $\mathbb{R} \times \mathbb{R}^{3m}$ and σ is continuous, B is a continuous operator. In regard to assumption (1) we deduce analoguosly to Theorem 3 in [6], that B is a k-set-contraction. From assumption (2) we receive:

$$\lim_{\|u\|_{2}\to 0} \frac{\|Bu\|_{\infty}}{\|u\|_{2}} = \lim_{\|u\|_{2}\to 0} \sup_{x\in [0, 1]} \frac{|f(x, u\circ\sigma(x), u'\circ\sigma(x), u''\circ\sigma(x))|}{\|u\|_{2}} = 0$$

Therefore N := A + B is a Fréchet-differentiable map in 0 with derivate A.

For applying Theorem 2 we have to show, that λ_0 is a characteristic value of (L, A) with odd multiplicity. We set $P: X \to X$ by Pu(x) := u(0) and $Q: Y \to Y$ by $Qv(x) := \int_0^1 v(x) dx$. P is a continuous projector on Ker(L) and $L_P^{-1}: Ker(Q) \to K(P)$ is given by

$$L_{P}^{-1}v(x) = \int_{0}^{x} \left(\frac{1}{p(y)} \int_{0}^{y} v(z) dz\right) dy - x \int_{0}^{1} \left(\frac{1}{p(y)} \int_{0}^{y} v(z) dz\right) dy$$

Q satisfies the conditions $\operatorname{Ker}(Q) = R(L)$ and $R(Q) = A(\operatorname{Ker}(L))$ and is therefore the projector Q_A of Section 4. We determine $K_A = L_P^{-1} \circ (I - Q) \circ A$: For $u \in X$ we have, after changing the order of integration:

$$K_{A}u(x) = \int_{0}^{x} \left(\int_{z}^{x} \frac{1}{p(y)} dy \right) \langle a, u(z) \rangle dz -$$

$$-x \int_{0}^{1} \left(\int_{z}^{1} \frac{1}{p(y)} dy \right) \langle a, u \circ \sigma(z) \rangle dz -$$

$$- \left[\int_{0}^{1} \langle a, u \circ \sigma(z) \rangle dz \right] \left[\int_{0}^{x} \frac{y}{p(y)} dy \right] +$$

$$+x \left[\int_{0}^{1} \frac{y}{p(y)} dy \right] \left[\int_{0}^{1} \langle a, u \circ \sigma(z) \rangle dz \right]$$

$$= \int_{0}^{x} h_{1}(x, z) \langle a, u \circ \sigma(z) \rangle dz + \int_{0}^{1} h_{2}(x, z) \langle a, u \circ \sigma(z) \rangle dz$$

This implies, that the eigenvalue problem $u = \lambda K_A u$ is equivalent to problem (I). Hence assumption (3) ensures, that λ_0 is a characteristic value of (I, K_A) of odd multiplicity, thus for (L, A). Therefore all hypotheses of Theorem 2 are satisfied.

Remarks:

- (1) Problem (I) leads to a linear operator equation of the form $I = \lambda (V + C)$, where C is an operator with finite dimensional range. Corresponding to the case of a Volterra equation, $I \lambda V$ is injective and therefore a linear isomorphism. Hence we can reduce (I) to an operator equation of the form $x = \lambda T(\lambda) x$, where $T(\lambda) = (I \lambda V)^{-1}$ °C is an operator with finite dimensional range.
- (2) A second order functional differential equation of neutral type without parameter λ and with other boundary conditions is considered in [8]. In the here considered case $\sigma_j([0, 1]) \subseteq [0, 1]$ for $2 \le j \le m$ can be assumed without loss of generality.
- (3) For convenience we have supposed that a is constant, and that the linear part is independent of u''. Equations without these restrictions can be treated analogously.
- (4) For sufficient large a and suitable $\sigma_j (2 \le j \le m)$ there exists an eigenvalue $\lambda_0 \in \left(-\frac{p_0}{k}, \frac{p_0}{k}\right)$.

REFERENCES

- [1] A. Ambrosetti, Proprietà spettrali di certi operatori lineari non compatti, Rend. Sem. math. Univ. Padova 42 (1969), 189-200.
- [2] E. N. Dancer, On the structure of solutions of non-linear eingevalues problems, Indiana Univ. Math. J. 23 (1974), 1069—1076.
- [3] E. N. Dancer, Boundary value problems for ordinary differential equations on infinite intervals, Proc. London Math. Soc. 30 (1975), 76-94.
- [4] C. Fenske, Leray-Schauder Theorie für eine Klasse, differenzierbarer Abbildungen in Banachräumen, Berichte der Gesellschaft für Mathematik und Datenverarbeitung Nr. 48, Bonn (1971).
- [5] G. Hetzer. Some remarks on \emptyset_+ -operators and on coicidence degree for a Fredholm equation with noncompact nonlinear pertubations (to appear).
- [6] G. Hetzer, Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type, Comm. Math. Univ. Carolinae 16 (1975), 121-138.
- [7] G. Hetzer, V. Stallbohm, Eine Existenzaussage für asymptotisch lineare Störungen eines Fredholm-operators mit Index 0 (to appear).
- [8] G. Kamenski, A. D. Myshkis, Boundary-value Problems for a nonlinear differential equation with deviating argument of neutral type, Differentsial'nye Uravneniya, Vol. 8, No. 12 (1962), 2171-2179.
- [9] M. A. Krasnoselski, Topological methods in the theory of nonlinear integral equations, Oxford (1963).
- [10] B. Laloux, Indice de coincidence et bifurcations. Thesis, Univ. catholique de Louvain.
- [11] B. Laloux. Indice de coincidence et bifurcations. Equations différentielles et fonctionelles nonlinéaire, Paris (1973), 109—121 (Editors: P. Janssens, J. Mawhin, N. Rouche).
- [12] B. Laloux, On the computation of the coincidence index in the critical case, Annales Soc. Scient. Bruxelles 88, II (1974), 176—182.
- [13] B. Laloux, J. Mawhin, Coincidence index et multiplicity, Rapport № 65 (1973); Séminaires de mathématique appliquée et mécanique. Univ. Catholique de Louvain.
- [14] J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topologically vector spaces, J. Diff. Equations 12 (1972) 610—636.
- [15] R. D. Nussbaum, Degree theory for lacal condensing maps, J. Math. Anal. Appl. 37 (1972), 714-741.
- [16] R. D. Nussbaum, Estimates for the number of solutions of operator equations, Appl. Analysis 1 (1971) 1 (1971), 183-200.
- [17] P. H. Rabinowitz. Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487-513.
- [18] P. H. Rabinowitz, A global theorem for nonlinear eigenvalue problems and applications, Contribut. to Nonlinear Functional Analysis. New York—London (1971), 11—36 (Editor: E. H. Zarantonello).
- [19] P. H. Rabinowitz, Some aspects of nonlinear problems, Rocky Montain J. Math. 3 (1973), 161-202.
- [20] C. A. Stuart, Some bifurcation theory for k-set-contractions, Proc. London Math. Soc. (3), 27 (1973), 531-550.
- [21] C. A. Stuart, J. F. Toland The fixed point index of a linear k-set-contraction, J. London Math. Soc. 6 (1973), 317-320.
- [22] C. A. Stuart, J. F. Toland, A global result applicable to nonlinear Steklov problems, J. Diff. Equations 15 (1974), 247—268.
- [23] J. W. Thomas, A bifurcation theorem for k-set-contractions, Pac. J. Math. 44 (1973), 749-756.

Mailing adress
Lehrstuhl C für Mathematik
RWTH Aachen
BRD—51 Aachen
Templergraben 55